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Abstract

We used a numerical ®nite element simulation to model the formation of ¯anking folds around rotating planar structures (e.g. veins, faults

or dykes) in a non-linear viscous medium during ideal simple shear. If the planar structure is much more viscous than its host it does not

deform and ¯anking folds with no displacement along the structure develop. Their vergence is consistent with the overall sense of shear.

However, if the planar structure is much less viscous than its host, strain is concentrated within the structure and a secondary shear zone is

developed in which slip is opposite to the overall sense of shear. Then, ¯anking folds develop that have a vergence, which is incompatible

with the drag on structure. If the de¯ection of markers is not clearly preserved, then such ¯anking folds can be easily misinterpreted as shear

bands indicating a wrong shear sense. The de¯ection of the foliation in ¯anking folds is very similar to deformed asymmetric pull-aparts and

can therefore help to interpret these otherwise ambiguous shear sense criteria. Because our model (ideal simple shear boundary conditions)

fails to describe back-rotation of planar structures in rocks we speculate that shear band geometries are indicative for general shear. q 2001

Elsevier Science Ltd. All rights reserved.

1. Introduction

1.1. Flanking structures

When the fabric of a rock (e.g. the foliation or lithological

layering) is de¯ected near the margins of a planar structure

within the rock (e.g. a fault or a cross cutting vein or dyke)

¯anking structures will be developed (Grasemann et al.,

1999; Passchier, in press). Except for some early descrip-

tions of de¯ection and/or folding of foliation along dykes

and veins (Gayer et al., 1978; Baumann, 1986; Rice, 1986;

Passchier and Urai, 1988; Hudleston, 1989), the importance

of ¯anking folds has been appreciated only very recently

(e.g. Druguet et al., 1997; Grasemann et al., 1999; Passchier,

in press). Some of these authors have illustrated (and

warned of) the enormous similarity between different ¯ank-

ing geometries arising from opposite sense of shear.

Especially different sense of slip along the planar structure

(henceforth called: transecting element, TE) may lead to

similar structures, which can be only interpreted kinemati-

cally correct if the de¯ection of the rock (henceforth called:

host element, HE) is genetically understood. For example,

the difference between extensional shear bands formed in

sinistral shear (Fig. 1a) and passively-rotated TE's formed

in dextral shear (Fig. 1b) may only be recognizable in the

resulting different angles between the HE and the TE (in this

case: ¯anking shear bands and ¯anking folds respectively;

Passchier, in press). Unfortunately, the sense of offset along

the TE as well as the de¯ection of the HE is often dif®cult to

determine, because of the lack of marker horizons

(Hudleston, 1989). This problem is closely related to the

interpretation of the shear sense of asymmetric boudins

and/or foliation boudinage. Depending on the sense of

rotation of lozenge-shaped pull-aparts (Fig. 1c and d),

almost identical asymmetric boudin geometries may form

during dextral or sinistral shear and must therefore be

considered as quite ambiguous kinematic indicators

(Hanmer, 1986; Goldstein, 1988).

Such geometric similarities may lead (and have led) to

grave misinterpretations of the direction of shear sense. If

the pull-aparts are ductilely deforming the clari®cation of

the de¯ection of HE near the necks of the boudins can help

to reveal the kinematics of the ¯ow.

In this paper we investigate the development of ¯anking

folds, which are a subset of other ¯anking structures

(Passchier, in press). For our study we use a numerical
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model with ideal simple shear boundary conditions and

compare our results with a range of ®eld examples. We

investigate the displacement and strain ®eld within and

outside the TE during progressive deformation as a function

of the rheology contrast between the TE and the HE. As

the paper aims to clarify some fatal misinterpretations of

shear sense direction, we begin with a clear de®nition of

the terminology.

1.2. De®nition of Terminology

In the discussion below it will be important to discrimi-

nate not only between the host element HE and the transect-

ing element TE (Passchier, in press), but also between the

de¯ected host element near the margin of the TE which is

call the internal host element HEi, and the external host

element HEe not in¯uenced by the TE (Fig. 2a). We also

discern between the rotation of the TE itself and the rotation

of elements within TE, which are called internal transecting

element TEi. Depending on the angles a (angle between TE

and TEi before deformation) and a 0(angle between TE and

TEi after deformation), three geometric types of ¯anking

structures are distinguished (Fig. 2): (a) s-Type with

synthetic displacement (a 0 , a ); (b) n-Type with no

displacement (a 0 � a ) and (c) a-Type with antithetic

displacement (a 0 . a ).

Although we use the original de®nition of s-, n- and

a-Type ¯anking folds (Passchier, in press), we avoid

confusion with the de®nition of syn- and antithetic (Stewart
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Fig. 1. Similarities and differences between (a) extensional shear bands and (b) ¯anking folds around a shear zone. Note that the overall shear sense is sinistral

in (a) but dextral in (b). Only careful inspection of the de¯ection of the markers near the shear zone can reveal the correct kinematics. (c) and (d) show both an

asymmetric boudinage. In (c) lozenge-shaped boudins are rotating opposite to the sinistral shear sense whereas in (d) the boudins are rotating in the direction of

the dextral shear (bookshelf or domino structure). Without de¯ection of markers the boudins are ambiguous kinematic indicators (Hanmer, 1986; Goldstein,

1988). HEÐhost element, TEÐtransecting element (Passchier, in press).

Fig. 2. The nomenclature for different parts of the ¯anking structure

(Passchier, in press) used in the text is llustrated in (a). HEeÐexternal

host element, HEiÐinternal host element, TEÐtransecting element,

TEiÐinternal transecting element. Depending on the angles a (angle

between TE and TEi before deformation) and a 0 (angle between TE and

TEi after deformation), three geometric types of ¯anking structures are

distinguished: (a) s-Type with synthetic displacement (a 0 , a); (b)

n-Type with no displacement (a 0 � a ); (c) a-Type with antithetic displace-

ment (a 0 . a). In all three examples the overall sense of shear is dextral. In

this paper we discuss only n-Type and a-Type ¯anking structures.



and Argent, 2000) by referring to the original de®nition of

Cloos (1928). We use co-shearing for the shear sense of

secondary shear zones, which have the same sense of dis-

placement as the ®rst order shear zone. Likewise, secondary

shear zones with an opposite displacement are counter-

shearing. Correspondingly, we use co-rotating for objects

rotating in the same direction as the rotational component of

simple shear and counter-rotating for objects rotating

against the shear sense (G. Oertel, pers. comm.).

Furthermore, we use the classi®cation of asymmetric

pull-aparts of Hanmer (1986). However, we use it in a

much broader sense (Jordan, 1991; Swanson, 1992) and

de®ne all boudins, pinch and swells and foliation

boudinages (Platt and Vissers, 1980), which rotate in the

direction of shear as Type I and against the shear as Type II.

Throughout the paper we follow the conventions of

classical structural geology textbooks and de®ne all positive

angles as counterclockwise. Dextral shear zones have a

negative shear strain g (Ramsay and Huber, 1983).

2. Numerical techniques

We investigate the development of ¯anking folds around

TE that formed prior to the development of the folds during

ideal simple shear, using the two-dimensional ®nite element

model BASIL of Barr and Houseman (1996). Flanking folds

are an inherently two-dimensional structure and BASIL is

therefore well-suited for their dynamic interpretation. We

assume a non-linear viscous rheology for both the TE and

the HE in which stress is proportional to strain rate raised

by some power. In a general form, such a constitutive

relationship may be written by relating the components of

deviatoric stress and strain rate by:

tij � B _E
1
n

21

� �
_1 ij �1�

where tij are the deviatoric components of the stress tensor,

_1 ij are the components of the strain rate tensor and _E is the

second invariant of the strain rate tensor. The pre-exponent

proportionality constant B incorporates all material

constants and temperature dependent terms (England and

McKenzie, 1982). The i and j subscripts represent the two

Cartesian directions. Strain rate is de®ned in terms of the

components of velocity u, in the xi- and xj-direction:

_1 ij � 1

2

2ui

2xj

1
2uj
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The rheology contrast between TE and HE was implemen-

ted by using different values of B for the host element and

the transecting element. The stress exponent n for both TE

and HE was assumed to be the same. The results presented

below are for n� 1. Then, Eq. (1) reduces to a linear rela-

tionship between stress and strain rate in which B is the

proportionality constant, called viscosity (equivalent to a

Newtonian ¯uid). Then, with B� 100, TE is hundred

times as viscous (strong) as the HE and for B� 0.01 TE

is hundred times less viscous (weaker) than the matrix,

which has a normalized viscosity of 1. Thus, the viscosity

B of the TE is also the viscosity- or rheology-contrast

between the TE and the HE. For B� 1, there is no rheo-

logical difference between the TE and the HE and the entire

model is equivalent to ideal simple shear conditions.

Rheology contrasts larger than 100 or smaller than 0.01

did not show any change in the results. Results for up to

n� 5 were calculated, but vary kinematically so little from

the results presented here, that it is not justi®ed to discuss

them.

The two-dimensional calculations were done using

BASIL by solving the force balance equations in two

dimensions:

2

2xj

tij 1
2

2xi

p � 0 �3�

where summation is over the i and j indices and p is the

pressure. The strain during progressive deformation was

calculated with Eq. (1) and assuming plane strain

deformation. After every time step velocity u and the

pressure p are recorded at every node of the grid shown in

Fig. 3.

2.1. Initial and boundary conditions

The initial and boundary conditions are illustrated in Fig.

3. The TE has the dimension of 0.4 length and 0.04 width

(colored black in Fig. 3), relative to a square box with the

dimensionless length 1. Only ¯anking folds around TE that

are initially oriented at 135 degrees to the shear zone bound-

ary and the HE were modeled (Durney and Ramsay, 1973).

This starting condition is analogous to the formation of

tension gashes, veins or fractures that were initially oriented

parallel to the shortening instantaneous stretching axis of

isochoric plane strain simple shear ¯ow (Passchier, 1997).
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Fig. 3. Model setup of the starting geometry and boundary conditions for

the ®nite element model calculations (for detailed descriptions see text).



The surface of the TE is made up of two circle segments.

The grid was generated with a self-meshing routine using

Delauney triangles with a minimum angle of 208. We have

tested the robustness of the results for mesh-size and for the

dimensions of the TE and found that a ®ner grid or narrower

TE width does not in¯uence the numerical results.

Boundary conditions were used that approximate ideal

simple shear in a long shear zone. For this we used displace-

ment boundary conditions at the top and bottom of the box

in Fig. 3. There, the xj-component of the velocity is 0. The

xi-component of the velocity is 1 on the top boundary and

21 on the bottom boundary. As such a shear strain 2g of 2

is achieved at time step 1. On the sides we assumed that all

velocities and stresses on the left boundary are identical to

those on the right boundary. Thus, the model geometry has a

ring shape describing an in®nite shear zone and no side-

boundary conditions need to be implemented.

3. Results

In the model setup described above a-Type ¯anking folds

develop by counter-shearing slip along the TE if TE is less

viscous than the HE (B , 1). If the TE is stronger than the

host element (B . 1) n-Type ¯anking forms by relative

rotation of the TE with respect to the HE (Fig. 4). The result

is best visualized in the form of small circular passive strain

markers initially arranged in rows and columns (Fig. 3).

After deformation the imaginary lines connecting the center

of the strain ellipses represent passive marker lines whereas

the ellipticity indicates strain (Fig. 4). Depending on the

viscosity ratio between the modeled TE and HE different

geometries of ¯anking folds develop, but dextral shear sense

will always result in z-shaped ¯anking folds, which have a

vergence consistent with the shear sense of the shear zone.

Instructive video ®les of the modeled progressive deforma-

tion can be downloaded from our web site:

http://bigaxp. geologie.univie.ac.at/¯anking_folds

3.1. Weak transecting elements (B� 0.01)

This numerical experiment describes natural examples

where a TE is much weaker than its host element and is

illustrated in Fig. 4a and Fig. 5a. This may be given by an

open fracture which allows nearly free slip during rotation

of the fracture (Hudleston, 1989) or when the transecting

element is a ductile shear zone in which ¯ow is concentrated

(Gayer et al., 1978; Baumann, 1986).

After onset of deformation the TE changes its shape with

decreasing ellipticity (i.e. shortened and thickened) until it

is aligned perpendicular to the shear zone (Fig. 4a,

2g � 0.8). After rotating through this position, where the

incremental longitudinal strain of a material line is zero

(Ramsay and Huber, 1983), the ellipticity of TE increases

(i.e. it stretches and thins). The displacement along TE is

counter-shearing and consequently marker lines are offset

across TE. Therefore, this model always results in a-Type

¯anking folds. The amount of offset is largest in the center

of TE and diminishes towards zero at the tips of TE. Con-

sidering TE as a shear zone and neglecting the external spin

of this shear zone, TE initially suffers convergent trans-

currence, which changes to divergent transcurrence (Marrett

and Peacock, 1999) after TE is rotated through its position

perpendicular to the shear zone boundary. As a result of this

complex counter-shearing along TE, the HE around the vein

is de¯ected into ¯anking folds. The strain within the short

limbs of the ¯anking folds (i.e. HEi) is markedly reduced.

According to the diminishing amount of offset along TE, the

amplitude of the ¯anking folds decreases towards the tip of

TE. Characteristically, the marker line above and below TE

forms a monoclinal fold with an opposite vergence than that

of the ¯anking folds. As a consequence marker lines are
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Fig. 4. Results of the model calculations showing the strain during formation of ¯anking folds: (a) for B� 0.01, (b) for B� 100. Small circular passive strain

markers initially arranged in rows and columns (Fig. 3) are shown after deformation for 2 g � 0.8 and 2 g � 1.8, respectively. The imaginary lines

connecting the center of the strain ellipses represent passive marker lines whereas the ellipticity indicate strain.



converging at the tip of the TE, where ¯anking folds and

monoclinal folds meet (Fig. 4a, 2g � 1.8).

Fig. 5a shows the central marker line, which was oriented

parallel to the shear zone boundary through the center of TE

before deformation, during increasing shear strain

(0 , 2 g , 1.8). The interlimb angles of the ¯anking

folds are decreasing with increasing shear strain due to

progressive co-rotation of the HEi marker lines. The rotation

of the TEi material line is more complex re¯ecting the

complicated interplay between rotational non-coaxial ¯ow

and spin of the TE shear zone (rotational/non-coaxial/spin-

ning shear zone in the sense of Passchier, 1986). Up to shear

strains of 2 g , 1.2 the material line is counter-rotating

because of the counter-shear along TE. The rotation rate

of the TEi has an opposite sense and is higher than the

rotation rate of TE. However, at this stage the TEi material

line is already at a low angle to the long axis of TE, whereas

the angle between the shear zone boundary and TE is still

much higher. Therefore, at higher shear strains

(, 2 g . 1.2) the external rotation rate of the TE shear

zone is larger and consequently the internal TEi is co-

rotating within the external reference frame.

3.2. Strong transecting elements (B� 100)

These numerical experiments describe natural examples

where the TE is much more competent than HE and is

illustrated in Fig. 4b and Fig. 5b. This situation may be

given when the transecting element is a tension gash ®lled

by some rheologically strong material or by a strong

intrusive dyke. Note that this model can be also applied to

geological examples where a more competent rim is

attached to the TE (e.g. Passchier, in press). In this special

case of a very high viscosity contrast (B� 100) the TE is

rigid and does not change its shape during deformation.

Consequently the strain markers within TE remain unit

circles, they are not offset, and the model always results in

n-Type ¯anking folds. Similar to the experiment with a

weaker TE (Fig. 4a), the marker lines above and below

the TE form monoclinal folds (Fig. 4b). However, in the

models with a strong TE the monoclinal folds and the

¯anking folds have the same vergence.

Fig. 5b shows the central marker line, which was oriented

parallel to the shear zone boundary through the center of TE

before deformation, during increasing shear strain

(0 , 2 g , 1.8). The interlimb angles of the ¯anking

folds are decreasing with increasing shear strain due to

progressive passive co-rotation of TEi.

3.3. Variable viscosity contrast between TE and HE

Sections 3.1 and 3.2 have described the extremes of

rheology contrast between host- and transecting-elements.

However, in many natural examples the rheology of TE and

HE may be quite similar, for example when TE is a quartz

vein emplaced in a HE which is a quartz-rich felsic gneiss.

In order to illustrate ¯anking folds for rheologically similar

HE and TE Fig. 5c shows the shape of ¯anking folds for the

rheology contrast range 0.01 , B , 100. It may be seen that

all qualitative characteristics described for B� 0.01 hold for

B , 1 and those described for B� 100 hold for B . 1. It

may also be seen that the width of HEi is roughly constant,

regardless of B. Interestingly, there is a similar structural

development for high viscosity contrasts during increasing

strain, as there is for high strains during increasing viscosity

contrast (compare Fig. 5a,b and 5c). Thus, ¯anking folds

around very strong TE (B� 100) at a shear strain of 2g � 1

will have an almost identical geometry to ¯anking folds

around less strong TE (B� 5) at a shear strain of 2g � 2.

Correspondingly, ¯anking folds around extremely weak TE

(B� 0.01) at 2g � 1 are very similar in geometry to ¯ank-

ing folds around TE that were only half as strong as HE

(B� 0.5) at 2g � 2. As a consequence, we suggest that

care must be taken when interpreting strain from the
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Fig. 5. Shape of central marker lines, which were oriented parallel to the

shear zone boundary through the center of TE before deformation. (a)

Marker lines for B� 0.01 during increasing shear strain

(0 , 2 g , 1.8). (b) Marker lines for B� 100 during increasing shear

strain (0 , 2 g , 1.8). (c) Marker lines for 0.01 , B , 1 (dashed curves)

and 1 , B , 100 (solid curves) for a shear strain of 2 g � 2.



geometry of a ¯anking fold, unless the rheology contrast

between HE and TE can be estimated (Treagus, 1999).

4. Comparison with natural examples

4.1. Examples of weak transecting elements

Fig. 6a shows a thin section of a pure quartz mylonite

from the Schober Group (Austria Austria, N46855.311 0,
E12843.338 0) with ®ne dynamically-recystallized grains.

The quartz grains have a well-developed shape and crystal

preferred orientation indicating a dextral sense of shear. The

mylonitic foliation (HE) is transected by a fracture (TE)

with a sinistral slip. Below and more clearly above the frac-

ture the HE forms a monoclinal fold with an opposite

vergence than the overall sense of shear ([1] in Fig. 6a).

Approaching the tip of the fracture the foliations form an

antiform on the upper end and a synform on the lower end

consistent with the counter-shearing slip on the fracture. As

a result of this syn- and antiformal de¯ection of HE the

foliation converges at the tips of TE ([2] in Fig. 6a). The

z-shape antiform±synform fold train ([3a and b] in Fig. 6a)

developed towards the center of the fracture have axial

planes dipping in the same direction as the fault. However,

the de¯ection of HE is apparently incompatible with the

sinistral slip of the fault. This structure is interpreted as an

a-Type ¯anking fold, which formed in the vicinity of a co-

rotating fracture. Probably this fracture developed at a high

angle to the shear zone and rotated clockwise during a still

ductile dextral non-coaxial deformation. Ductile sinistral

slip along the fracture is furthermore con®rmed by dynami-

cally-recrystallizing quartz ([4] in Fig. 6a).

The resulting de¯ection of the mylonitic foliation is

nearly identical to the results of the model calculations of

Fig. 4a. Note that in the absence of a clear de¯ection of the

foliation in the central part of the fracture the ¯anking

structure could be easily misinterpreted as a shear band,

indicating an opposite (i.e. sinistral) shear sense.

As a second example, Fig. 6b shows a calcite mylonite

from a major normal fault in Naxos (Greece, N37811.393 0,
E25830.919 0) with an unambiguous north-directed shear
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Fig. 6. Natural examples of ¯anking folds: (a) Thin section (crossed polarized light) of a pure quartz mylonite cut parallel to the lineation and normal to the

foliation from the Schober Group, Austria (N46855.311 0, E12843.338 0). The shape-preferred orientation of ®ne dynamically recrystallized quartz grains

reveals a dextral sense of shear. The de¯ection of the foliation around a rotated fracture shows many similarities with the result of the model calculations of

a-Type ¯anking folds shown in Fig. 4a: [1] Monoclinal fold at the tip of TE with a vergence opposite to the shear sense. [2] Converging foliation near the tip of

TE, [3a] Antiformal and [3b] synformal ¯anking fold with a vergence consistent to the sense of shear. [4] Dynamically recrystallized quartz indicating counter-

shearing in the co-rotating TE. (b) Calcite mylonite from a major normal fault in Naxos, Greece (N37811.393 0, E25830.919 0). During a late stage of

deformation the metamorphic layering is boudinaged by fractures [2], which are co-rotating during progressive deformation resulting in the formation of

a-Type ¯anking folds [1a, b] and Type I boudinage [3] (compare Fig. 8a). (c) Block of Laaser Marble cut parallel to the lineation and normal to the foliation

(quarry in Vintschgau, Italy; photo courtesy of N. Mancktelow, ETH ZuÈrich). Whereas the structures at [1] could be misinterpreted as shear bands or Type II

boudinage (compare Fig. 8b) indicative for a sinistral sense of shear, the strongly developed fold-train at [2a and b] reveals a-Type ¯anking fold with an overall

dextral shear. Note that the graphitic markers at [2b] make the typical s-shape of co-rotating Type I boudins (compare Fig. 8a). The dextral shear sense is

furthermore con®rmed by a small thrust developed at [3]. d) n-Type ¯anking fold [1a, b] around a rotated quartz vein within the Main Central Thrust zone in

the Sutlej Valley, India (N31821.023 0, E77823.143 0). The de¯ection of the mylonitic foliation is very similar to the model results of Fig. 4b, indicating that the

vein has been stronger during this stage of deformation.



sense (N is right in Fig. 6b). During a late stage of deforma-

tion the metamorphic layering is boudinaged by fractures

([2] in Fig. 6b), which are co-rotating during progressive

deformation resulting in the formation of a-Type ¯anking

folds ([1a, b] in Fig. 6b). Qualitatively the shape of the dark

slightly more competent layer ([4] in Fig. 6b) is comparable

with the form of the central marker line in Fig. 5a after a

shear strain of ±g � 1.2. The dark more competent layer

([3] in Fig. 6b) forms a typical Type I boudinage (compare

Fig. 8a) discussed below in more detail.

Fig. 6c illustrates the importance of carefully investigat-

ing the de¯ection of HE in order to interpret the structure

with an example of a-Type ¯anking folds in the Laaser

Marble (Vintschgau, Italy, Fig. 6c). In the left part of the

block ([1] in Fig. 6c), black graphitic layers in the nearly

pure white marble are offset by shear zones, whichÐ

following classical structural geology text booksÐwould

be interpreted as shear bands with a Riedel like geometry

(Platt 1984), indicating a sinistral sense of shear. However,

following the graphitic layers to the right side of the block a

sinistral shear zone is associated with a fold train verging

towards the right of the picture ([2a and b] in Fig. 6c). Again

it is suggested that these folds are a-Type ¯anking folds,

developed near a dextral rotating TE with a counter-

shearing slip. Note that the shape of the graphitic layer

truncated by two faults with sinistral offset on each side

([2b] in Fig. 6c) is very similar to the Type I boudins in

Fig. 7a, discussed below. The overall dextral sense of shear

is further supported by a small thrust developed in the upper

right part of the marble block ([3] in Fig. 6c).

Both, the numerical model results (Fig. 4) and these

natural examples of a rather homogeneous ®ne-grained

quartz mylonite (Fig. 6a) and of a pure marble (Fig. 6c)

as well as observations from glaciers (Hambrey and

Milnes, 1975) con®rm that ¯anking folds do not need a

pronounced pre-existing anisotropy like a foliation de®ned

by alignment of micas in the HE in order to develop around

a TE.

Exceptionally beautiful examples of a-Type ¯anking

folds (and correct kinematic interpretation!) are given in

Swanson (1998) using asymmetric pull-aparts for estimat-

ing minimum shear strains during non-coaxial deformation.

Figure 71B in Swanson (1998) reveals a reversal of the

antiformal bending of the ¯anking fold into a small syncline

immediately adjacent to the TE consistent with a counter

shearing drag along TE. This drag effect is also seen in Fig.

6c [1] and may complicate the correct kinematic interpreta-

tion. Comparing these natural examples with our modeled

central marker lines (Fig. 5c), this drag effect may be a

function of the viscosity contrast between TE and HE.

4.2. Examples of strong transecting elements

The examples discussed above showed a-Type ¯anking

folds with de¯ection of the markers similar to the results of

the model calculations illustrated in Fig. 4a and 5a. In

contrast, quartz-®lled rotated extension gashes in mylonitic

orthogneisses from the Main Central Thrust in the NW-

Himalayas (Grasemann et al., 1999) indicate that the TE,

probably with an attached rim (HEi), was more competent

during deformation than HEe (Fig. 6d). This can best be seen

from a direct comparison between Fig. 4b and 6d. In this

case n-Type ¯anking folds formed by relative rotation of

quartz veins probably together with attached rims being

more competent than the host rock material during this

stage of the deformation. A high angle between the HEi

and TE is preserved (i.e. ,1058 in Fig. 6d). Under favorable

conditions this angle may represent the initial opening angle

even if the angle between HEe and TE is low (i.e. ,458 in

Fig. 6d) and may be used as a quantitative kinematic indi-

cator (Grasemann et al., 1999). Comparison with the results

of the model calculations where the TE is undeformable (i.e.

B� 100) reveals that folding is just an effect of passive

rotation of the TEi (and HEi) and a counter-shearing drag

effect between TE (and HEi) and HEe.
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Fig. 7. (a) Type I boudinaged metabasic dyke in paragneisses within the Kalak Nappe Complex (Finnmark, N-Norway; photo courtesy of H. Rice, University

of Vienna). Whereas the rotated pull-apart at [1] could be easily confused with a Type II counter-rotating boudin revealing a sinistral sense of shear, the

antiform of an a-Type ¯anking fold at [2a] suggests dextral kinematics. The metabasic dyke segment at [2b] makes the typical s-shape of co-rotating Type I

boudins (compare Fig. 8a). The deformed boudins are separated by counter shearing zones of distributed strain [3]. Dextral displacement is also con®rmed by

abundant z-shaped folds [4]. (b) Type II boudinage of a pegmatite within the Austroalpine Crystalline (Schober Group, Austria; loose block at N46855.967 0,
E12842.584 0). The co-shearing movement between the pull-aparts is recorded by shear-band type de¯ection of the internal foliation [2a, b] consistent with the

sense of shear at [1] (compare Fig. 8b).



5. Discussion

5.1. A cautious note on ¯anking structures as kinematic

indicators.

The boundary conditions used in the presented models for

the development of ¯anking folds are ideal simple shear,

isochoric plane-strain ¯ow in the far ®eld. However,

Baumann (1986) showed that a-Type ¯anking folds,

which are nearly identical to our modeled structures, can

also develop under pure shear isochoric plane-strain ¯ow.

The model setup and starting geometry assumed a less

competent TE oriented at an intermediate position between

the two orthogonal eigenvectors of ¯ow. During pure shear

deformation non-coaxial strain is concentrated within TE

rotating towards the stretching eigenvector and resulting

in an a-Type ¯anking fold. The results of Baumann (1986)

and our work can be best compared using the concept of

perturbation strain (Baumann, 1986; Mancktelow, 1991):

Finite deformation can be viewed to be composed of (i)

the average, homogeneous part of deformation as de®ned

by the boundary conditions and (ii) the component by which

local deformation is perturbed from this. In case of the pure

shear model of Baumann (1986) the non-coaxial perturba-

tion strain of the rotating TE has to be balanced along the

margins of TE with a rotational deformation but with a

different sign in order to compensate the overall average

homogeneous coaxial deformation. In case of our dextral

simple shear model the sinistral general shearing perturba-

tion deformation of the co-rotating TE has to be balanced

along the margins of TE with a dextral general shear

deformation in order to compensate the overall dextral

homogeneous ideal simple shearing. Therefore the

kinematic of the ¯ow has to be constrained independently

by different shear sense indicators in order to interpret

¯anking structures correctly (e.g. Figs. 6 and 7). However,

¯anking structures are still very useful because they bear

important information about the ¯ow geometry, which will

be subject of further models including general shear

boundary conditions.

5.2. A cautious note on asymmetric boudinage as kinematic

indicators.

A familiar example that may be easily misinterpreted

kinematically is the development of structures around a

TE during boudinage. Our numerical model does not

include anisotropies or more competent layers within the
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Fig. 8. (a) Co-rotating (Type I) and (b) counter-(Type II) boudinage (Hanmer 1986, Goldstein 1988). If the pull-aparts are rigid and reveal no internal

deformation, these types of boudins are ambiguous kinematic indicators. However, if the boudinaged layer is deformed, the sense of rotation of the fracture

separating the boudins can be derived. Note, that the geometry of Type I is very similar to the a-Type ¯anking folds modeled in Fig. 4a.



HEÐas they occur during boudinage. However, the striking

similarities of our model results and natural examples of

boudinaged layers (compare Figs. 6±8), merits a short

discussion. Asymmetric boudinage or ºback-rotationº of

boudins and pinch and swells are frequently used shear

sense criteria (e.g. Cloos, 1947; Ramberg, 1955; Hanmer,

1986; Goldstein, 1988; Jordan, 1991). StroÈmgaÊrd (1973)

investigated the stress ®eld and the factors that may lead

to the formation of asymmetric lozenge-shaped pull-aparts.

However, crucial for the quantitative kinematic inter-

pretation is whether the boudins are co- (Type I) or counter-

rotating (Type II). In the absence of a characteristically

deformed marker line (compare Fig. 1c and d) this may be

a dif®cult task and therefore it has been suggested that

lozenge-shaped rotated pull-aparts are quite ambiguous

kinematic indicators (Hanmer, 1986; Goldstein, 1988;

Jordan, 1991). However, if the boudinaged layer is

deformed, the de¯ection of marker lines along the shear

fracture separating the pull aparts may help to reveal the

sense of rotation.

In Type I co-rotating boudins, the fracture separating the

boudins is co-rotating as well, resulting in a counter-

shearing slip. The resulting de¯ection of the markers within

the boudins is very similar to the results of the presented

model calculations, where a weaker TE is co-rotating during

simple shear deformation (Fig. 8a). Thus this type of

boudinage could be interpreted as an a-Type ¯anking fold

where the marker lines are displaced along TE in a different

sense but where the de¯ection of HE forms an anti-/synform

fold train with a vergence consistent with the overall shear

sense. Beautiful natural examples together with an analogue

model are given in Fig. 3b and 6 in Hanmer (1986). The

close relationship of Type I boudinage to ¯anking folds is

further supported by published superb examples of co-

rotating foliation boudinage (®gures 9a and 11d in Swanson,

1992).

Another example of an easily misinterpreted boudinage

structure is shown in Fig. 7a. This shows a metabasic dyke

boudinaged in paragneisses from the Kalak Nappe (Finn-

mark Norway). First investigations of the boudinage ([1] in

Fig. 7a) suggest that fracturing of the metabasic dyke and

clockwise counter-rotation of the pull aparts (Type II) indi-

cate sinistral sense of shear. However, a closer inspection of

the left part of the picture reveal an antiformal fold at the

right end of a boudin ([2a] in Fig. 7a) with a vergence

consistent with a dextral sense of shear. Likewise, in con-

tinuation of the dyke to the right, the left end of the next

boudin shows a slight tendency to deform into a synform

([2b] in Fig. 7a). These observations suggests that the dyke,

although fractured, was still able to deform after separating

into single pull-aparts and that the fractures initially at a

high angle have been clockwise co-rotated in an overall

dextral shear ([3] in Fig. 7a) resulting in Type I boudinage.

Note that many small-scale z-shaped folds within the

paragneisses con®rm a dextral shear sense ([4] in Fig. 7a).

In Type II counter-rotating boudins, the fracture

separating the boudins is counter-rotating as well, resulting

in a co-shearing slip (Fig. 8b). The geometry, the deforma-

tion of the pull-aparts and the de¯ection of markers are very

similar to back-rotated oblique shear bands (Swanson,

1992) or ecc-structures (Platt, 1984; Malavielle, 1987;

Jordan, 1991). Contrary to the Type I, the markers are

de¯ected along the fracture separating the boudins, which

is consistent with the co-shearing slip on it. Many excellent

examples of this de¯ection and deformation of boudins with

co-shearing shear band geometries exist (e.g. ®gures 7 and 8

in Malavielle, 1987).]. Fig. 7b shows a Type II boudinage of

a pegmatite within the Austroalpine Crystalline (Schober

Group, Austria; loose block at N 46855.967 0,
E12842.584 0). The co-shearing movement between the

pull-aparts is recorded by shear-band type de¯ection of

the internal foliation ([2a, b] in Fig. 7b) consistent with

the sense of shear ([1] in Fig. 7b).

In the presented model calculations with ideal simple

shear boundary conditions the TE is always co-rotating

and therefore we failed to reproduce counter-rotating and

co-shearing TE. Therefore, our model supports the con-

clusions of Jordan (1991) that counter-rotation of lozenge-

shaped boudins with shear band geometries are a typical

feature of transpression zones formed by general shear. A

more detailed investigation of the mechanism leading to

¯anking shear bands or Type II boudinage has to be done

by expanding our numerical model to general shear

boundary conditions.

6. Conclusions

The model calculations presented here reproduce

successfully a-Type and n-Type ¯anking folds, which

closely resemble natural examples. From comparison of

the natural examples with the numerical modeled structures

the following can be concluded:

The recognition of a-Type ¯anking folds or shear bands

requires close inspection of the de¯ection of markers along

TE. In absence of a clear preservation of the de¯ection of

HEi, especially in the central part of TE, both structures can

be easily confused. Confusion of ¯anking folds and shear

bands results in a wrong interpretation of the kinematic

frame.

Co- (Type I) and counter-rotating (Type II) boudinaged

competent but deformable layers, pinch and swells and

foliation boudinage have many similarities to ¯anking struc-

tures. The de¯ection of marker lines is distinctly different

for both types: (i) Type I boudinage results in de¯ection of

markers, which is identical to the presented numerical

model of a-Type ¯anking folds when TE is less competent

than HE. The de¯ection of HEi is inconsistent with the

counter-shearing slip on TE but the associated ¯anking

folds have a vergence consistent with the overall sense of

shear. (ii) De¯ection of markers in Type II boudinage results

in typical shear band geometries. The recognition of the

B. Grasemann, K. StuÈwe / Journal of Structural Geology 23 (2001) 715±724 723



de¯ection of markers within such asymmetric pull-aparts is

essential for the correct interpretation of the shear sense.

Our model calculations with ideal simple shear boundary

conditions was unable to reproduce counter-rotating TE and

therefore supports the conclusions of Jordan (1991) that

counter-rotation of lozenge-shaped boudins with shear

band geometries are a typical feature of transpression

zones formed by general shear.

The development of the a- and n-Type ¯anking folds do

not need an anisotropic HE (e.g. foliation) in order to

develop but can readily form in homogeneous media in

the vicinity of the rotating TE: (i) a-Type ¯anking folds

develop along a counter-shearing TE with free-slip or

incompetent TE ®lling material; (ii) n-Type ¯anking folds

develop by passive co-rotation when the TEi and sometimes

an attached rim of HEi are more competent than the HEe.
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