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Introduction

This course (LV GEO.916) deals with quantitative estimate of processes in the Earth’s
lithosphere. As such, the qualitative processes and geometries of the lithosphere as dis-
cussed in the ”geodynamics” course (LV GEO.524) of your curriculum are assumed to be
known. In other words, it is expected that you have a basic qualitative understanding of
the thermal and density structure of the lithosphere and how these rule fundamental plate
tectonic processes like rifting, collision or subduction (e.g. Fig. 2.16 to Fig. 2.27 in my
textbook ”Geodynamics of the Lithosphere”). For this course, an extract of the subject of
Geodynamics is made that fits a volume of a course incuding 13 Units taught in two hours
per week over 1 semester. In the skript, each Unit is summarised in no more than 5 - 10
skript pages per Unit. The content of this course can be found in a series of textbooks.
For those of you who want to understand this subject in more depth, I recommend the
following three books:

– Turcotte D.L. and Schubert G. (2014): Geodynamics, 3rd ed., Cambridge University
Press, 496 p.

– Fowler C.M.R. (1990): The Solid Earth. An Introduction to Global Geophysics. Cam-
bridge University Press. 472 p.

– Stüwe K. (2007): Geodynamics of the Lithosphere. Springer Verlag, Berlin Heidelberg,
493 p.

The course script is made largely as an extract from Stüwe (2007), where more detail on
each Unit can be found. I hope you enjoy the course and look forward to work with you!

21.12.2014 Kurt Stüwe
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4 GEO.916: Unit 1

1 Unit: The Diffusion Equation

The heat conduction equation - more commonly known as the diffusion equation - is
fundamental for the understanding of the transport of heat in the lithosphere. It turns out
that the very same equation cannot only be applied to the transport of thermal energy, but
also to the diffusion of mass. It finds therefore application in many other fields, for example
geomorphology, metamorphic petrology or hydrology. Thus, the diffusion equation is the
first equation in this course that we will discuss in some detail. The fact that it is a second
order partial differential equation should not scare us off. We will show that it is possible
to understand it quite intuitively. The equation is a combination of two fundamental laws
of heat conduction:

1.1 Fourier’s Law of Heat Conduction

Fourier’s 1. law is the basic law underlying the diffusion equation. This law states that
the flow of heat q is directly proportional to the temperature gradient (Fourier 1816). This
statement can easily be formulated in an equation:

q = −k
dT

dz
. (1)

In this equation q is short for heat flow, T stands for temperature and z for a spatial
coordinate, for example depth in the crust. The ratio dT/dz is the change of temperature
in direction z. We call this ratio the temperature gradient. k is the proportionality
constant between the gradient and the flow of heat. In order to understand this law better
(and understand the units of k), let us consider a more familiar analogue: the flow of
water in a river. The same law applies. In a river the flow of water can be described by
the volume of water passing per unit of time and per area of cross section of the river (in
SI-units: m3 s−1 m−2 =ms−1). This is called the volumetric flow. When normalized only
to the width of the river and not to the cross sectional area of the river, the volumetric flow
has the units of m2 s−1 . In contrast, the flow of mass has the units kg s−1 m−2. Fourier’s
law – applied to our example of water flow – states that the flow of water is proportional to
the topographic gradient of the river. This corresponds well to our observations in nature:
The steeper a river bed, the faster the flow of water in the river (per square meter of cross
sectional area). Fourier’s law seems to be a good model description for this observation.
This simple example also explains why there is a negative sign in eq. 1. The flow is against
the gradient: it is positive in the downwards direction of the gradient.

In the theory of heat conduction, the flow of heat has obviously not the units of volume
per time and area, but energy per time and area. (in SI units: J s−1 m−2 =Wm−2).
The thermal gradient now replaces the topographic gradient of the river. Because of
historical reasons heat flow is sometimes given in heat flow units, or hfu. One hfu
corresponds to 10−6 cal s−1 cm−2 and can easily be converted into Wm−2. The units of
the proportionality constant k, in eq. 1, follows now easily from the units of the other
components of the equation: Because temperature has the units of K (or ◦C) and z has
the unit m, k must have the units J s−1 m−1 K−1 so that the equation is consistent in its
units. The constant k is called thermal conductivity. We can now try to read eq. 1. We
can see that the flow of heat trends to zero if the conductivity is very low, regardless of
the thermal gradient. Correspondingly, if the conductivity is very large, the flow of heat
becomes large, even if the thermal gradient is very low. The equation may therefore be
understood quite intuitively.
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Figure 1: Map of global surface heat flow. The map is contoured in milli W m−2 and data
above 300 mW−2 are omitted so that only a conductive response is shown. Nevertheless,
because of the highly irregular distribution of the data, the contouring on a global scale
is strongly dependent on the contouring algorithm and is associated with large uncertain-
ties in areas of low data density. (made with the Global Heat Flow Data Base of the
International Heat Flow Commission, W. Gosnold, Custodian pers. comm. 2006). As a
consequence, this map is exclusively a representation of the data base with no considera-
tion of the data distribution, its density or their reliability. As such, it appears (wrongly)
that the heat flow on the oceans is lower than that of the continents. For a more considered
heat flow map see Pollack et al. (1993) or Wei and Sandwell (2006).

Would the thermal gradient be constant everywhere, we could write it as ∆T/∆z.
However, in geological problems this gradient is never constant. Thus, we use the deriva-
tive dT/dz, which states that we want to be careful and consider our thermal gradient only
to be constant within each infinitely small section of the thermal profile. If the gradient
changes along the z direction, then eq. 1 states that the heat flow must also change.

1.2 Energy Balance

The second part of the diffusion equation (often called Fourier’s 2. law) describes an
energy balance. This energy balance relates heat and temperature and the change of heat
flow with change in temperature. This relationship may be established independently from
eq. 1 and may be written as:

∂T

∂t
∝ −∂q

∂z
. (2)

This equation states that the rate of temperature change of a rock must be proportional
to the rate with which its heat content changes (∝ is the symbol for “proportional to”).
The rate with which the heat content of a rock changes (∂q/∂z) is given by the difference



6 GEO.916: Unit 1

Figure 2: The flow of heat in a unity volume
of rock. The heat production inside this vol-
ume S, is not considered until we discuss real
continental geotherms.

qout

qin

S

dy
dx

dz

between the flow of heat into the rock and the flow of heat out of the rock (Fig. 2). If the
heat flow into the cube of Fig. 2 is larger than the flow of heat out of it, then the heat
content of the cube will rise and its temperature will increase. If the heat flow into the
volume is just as large as that that flows out, the temperature will remain constant. If
more heat flows out of the cube than into it, then its temperature will decrease.

In the last sentences we have begun mixing the terms “temperature” and “heat”. How-
ever, we have to remain careful no to confuse them as the rate of temperature change is
not the same as the rate of heat content change. They relate by:

H = Tρcp (3)

where H is the volumetric heat content in J m−3. The rate, with which the temperature
will change for a given change in heat content depends on another material specific pro-
portionality constant. This is the specific heat capacity cp. The specific heat capacity or
short “specific heat” has the units of J kg−1 K−1 and defines how many Joules are required
to heat the mass of one kg of rock by one degree Kelvin. The most common abbreviation
for specific heat is c. The subscript p symbolizes the condition that the specific heat is
measured at constant pressure. If the specific heat of a rock is large, we need many Joules
to heat the rock and even a rapid increase of its heat content will lead to slow temperature
increase and vice versa. Specific heat is formulated in terms of the mass that is heated.
Considering that the energy balance in eq. 2 is formulated in terms of the spatial coordi-
nate z, and heat capacity is formulated in terms of mass, we need to multiply cp with the
density ρ, so that the relationship between the spatial change of heat flow and the tempo-
ral change of temperature is consistent with the units. We can write the proportionality
of eq. 2 as:

ρcp
∂T

∂t
= −∂q

∂z
. (4)

(see also eq.41 for its equivalent in terms of heat). It should now be straight forward to
understand eq. 4 intuitively using Fig. 2. The negative sign arises because the temperature
increase when ∂q = qout − qin is negative, that is, more heat flows into the rock volume
than out of it. You may have noticed that the step from eq. 2 to eq. 4 was accompanied
by the change from total- to partial differentials. This was necessary, because different
parts of this equation are now differentiated with respect to different parameters.
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1.3 The Diffusion Equation

If we substitute Fourier’s law of heat conduction (eq. 1) into the thermal energy balance
of eq. 4, we arrive at:

ρcp
∂T

∂t
=

∂
(

k ∂T
∂z

)

∂z
. (5)

Eq. 5 is the general form of the one-dimensional diffusion or heat conduction equation. If
k is independent of z (e. g. if we consider heat conduction in an area without lithological
contrasts), it is possible to simplify eq. 5 significantly. k can then be taken out of the
differential and we can write:

ρcp
∂T

∂t
= k

∂∂T

∂z∂z
or :

∂T

∂t
= κ

∂2T

∂z2
. (6)

The constants k, ρ and cp are now summarized to κ = k/(ρcp). κ is called thermal diffu-
sivity. Eq. 6 can also be understood intuitively, without following the detailed derivation
given above. Eq. 6 may be formulated in words as:

– The rate of temperature change is proportional to the spatial curvature of the tem-

perature profile.

If you do not understand the relationship between this sentence and eq. 6, then remember
that the first differential of a function describes its slope (or: “gradient”, or: “rate”) and
the second its curvature.

Figure 3 illustrates this graphically. In our daily lives we encounter many examples
that are described by this equation. Think for example that a piece of toast cools much
quicker on its corners than along the edges or in its middle. This is because the spatial

curvature of the isotherms in the toast is the largest at the corners! The same is true for
the rapid cooling of the tip of a needle, the rapid erosion of ragged mountain tops and
countless other examples in nature, all the way down to the rapid chemical equilibration
of fine grained rocks in comparison with coarse grained rocks.

If we want to use eq. 6 we must solve it. For this we need boundary- and initial
conditions. We also need some mathematical knowledge so that we can integrate this
equation. Various methods how to go about this are discussed in sect. 6.0.1. A large
part of this chapter will deal with various solutions of this equation. In this context we
will often meet the terms “boundary conditions” and “initial conditions”. Make sure you
understand what they mean.

Figure 3: The thermal equilibration of a ran-
dom temperature profile. The temperature
profile is drawn at two different time steps t0
and t1. Note that the largest change in tem-
perature between the two time steps has oc-
curred in those places of the profile where
the curvature of the profile is the largest
(s. eq. 4). Where the curvature of the profile
is zero (at the inflection points) the temper-
ature does not change at all.

T

z

t0

t1
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• The magnitude of κ A quantitative application of eq. 6 requires the knowledge
of κ and therefore the knowledge of k, ρ and cp. The specific heat of rocks is about
cp =1000 – 1 200 J kg−1 K−1 (Oxburgh 1980). For most rocks cp does not vary by more
than 20% around this value. Thus, the nice and even value of cp =1000 J kg−1 K−1 is
a sound assumption that can be used for many thermal problems. The density of many
crustal rocks is of the order of 2 750 kgm−3 and varies also not all that much around this
value. However, thermal conductivity, varies by the factor 2 or 3 between different rocks
types (Table 1). Fortunately, it is between 2 and 3 J s−1 m−1 K−1 for many rock types.
For k=2.75 J s−1 m−1 K−1 and the values for specific heat and density from above the
diffusivity is: κ = 10−6 m2 s−1. Because this value is easy to remember it is commonly
used in the literature. Note, however, that κ may also be twice- or half as large if the
thermal conductivity of rocks is twice or half as large.

1.3.1 Heat Refraction

If rocks of different thermal conductivity are in contact, the phenomenon of heat refraction
may occur. What this is, is easily explained with eq. 1. In thermal equilibrium, the flow
of heat in two adjacent rocks must be equal. Following from eq. 1 we can formulate:

−q = k1
∆T1

∆z
= k2

∆T2

∆z
, (7)

where the subscripts 1 and 2 denote two different rocks as shown in Fig. 4. We can see in
this equation that, if the conductivities k1 and k2 are different, the temperature gradient
in the rock with the higher conductivity must be lower and vice versa (Fig. 4). This is
called heat refraction. Eq. 7 can also be written in differential form. This means, the
temperature gradient must not change abruptly, but can also change continuously, if there
are continuous changes in thermal conductivity.

Let us illustrate the phenomenon with an example. A rock with extremely high ther-
mal conductivity, for example an iron ore body, will be practically isothermal, even if it
stretches over many vertical kilometers in the crust. Its high conductivity will cause it to
adapt some average temperature. Thus, the upper part the body may have a significantly
higher temperature than its surroundings while its lowest part is colder than its surround-
ings. As a consequence, it is conceivable that the process of heat refraction will even leads
to some kind of contact metamorphism.

Jaupart and Provost (1985) have noticed that there are some important differences in
thermal conductivity between the sediments of the Tethys zone and the high Himalayan
crystalline complex. They suggested that the process of heat refraction may have been

Table 1: Thermal conductivities
and heat capacities of some rocks
and common materials. k is
given in J s−1 m−1K−1 and cp
in J kg−1K−1. The change of
thermal conductivity as a func-
tion of pressure and temperature
are negligible at geologically rel-
evant temperatures in the crust
(Cull 1976; Schatz and Simmons
1972).

rock type k cp

sandstone 1.5-4.2 920
gneiss 2.1-4.2 800
amphibolite 2.5-3.8 840
granite 2.4-3.8 790
ice 2.2 1 800
water 0.58 4 200
salt 5.4-7.2 880
iron 73 460
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Figure 4: Illustration of the process of heat
refraction. The flow of heat in the dark and
the light shaded bodies is the same. How-
ever, the temperature gradient in the dark
shaded body is larger, because its thermal
conductivity k1 is smaller. The subscripts 1

and 2 denote the dark and the light shaded
body, respectively.

of relevance in connection with the melting of the Himalayan leucogranites. The process
has also been discussed as the cause for high grade metamorphism in several Australian
provinces (e.g. Mildren and Sandiford 1995) and as the trigger for a range of tectonic
processes (Sandiford 1999). In fact, several exploration companies currently explore for
geothermal energy sources in Australia by looking for regions where rocks of low thermal
conductivity insulate underlying rocks of high thermal conductivity (Hillis et al. 2004).

If we want to describe the process of heat refraction quantitatively, we can not assume
the simplification that we have made in going from eq. 5 to eq. 6. We must stick with
eq. 5 to describe conductive equilibration.
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2 Unit: Stable Continental Geotherms

Three fundamental processes create and redistribute heat in the continental lithosphere:
conduction, advection and production. If we add heat advection and heat production terms
to the diffusion equation discussed above, then a full one-dimensional description of the
thermal energy balance for the lithosphere has the form:

∂T

∂t
=

(

k

ρcp

)

∂2T

∂z2
+ u

∂T

∂z
+

(

S

ρcp

)

, (8)

where the diffusivity is the ratio of conductivity and density × heat capacity: κ = k/ρcp.
The central term on the right hand side of this equation describes advection (at the rate
u) and advection may be due to transport of mass by erosion, deformation, magma or
fluid and we will discuss some of these later in this course. In the most right term on the
right side of the equation above, the heat production S may have mechanical, chemical

and radioactive contributions. In this section we learn to describe aspects of the thermal
structure of the continental lithosphere.

2.1 Thermal Definition of the Lithosphere

The lithosphere may be defined thermally or mechanically. According to the thermal def-
inition, the lithosphere is the outer shell of Earth, in which heat is transported primarily
by conduction. In contrast, in the asthenosphere, heat is transported primarily by convec-

tion. Thus, the lithosphere itself is nothing but a thermal boundary layer of Earth. This
boundary layer looses heat at all times through the Earth’s surface into the atmosphere
and further – by radiation – into space. The average heat flow through the surface of
the continents is 0.065 Wm−2. The total surface area of the continents is about Ac =
2 ·108 km2. Thus, the total heat loss of earth from the continents is 1.3 ·1013 J s−1. This
heat loss is balanced by radioactive heat production within the lithosphere and by heat
flow into the lithosphere from the asthenosphere, so that this thermal boundary layer has
a largely constant temperature profile, if it is not disturbed by orogenesis. Thermally
stabilized lithosphere has a thickness between 100 and 200 km (Pollack and Chapman
1977).

2.2 Definition of Geotherms

The function that describes temperature in the lithosphere as a function of depth is what
we call a geotherm. We discern:

– stable or steady state geotherms,

– transient geotherms.

• Stable geotherms Stable or steady state geotherms form by long term thermal equi-
libration of the lithosphere. In general, this is understood that the term “steady state”
refers to a geotherm in a stationary lithosphere and we shall use it in this way in this
section. However, in other reference frames, steady state geotherms may also occur in a
moving lithosphere (for example a lithosphere that moves upwards relative to the surface
during erosion).

In most geological situations, the temperatures of steady state geotherms increase
steadily with depth. Stable geotherms are only found in regions that have had at least
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about 100 my time for equilibration and have not changed in thickness during this time.
The origin of this number is discussed in sect. 3.1.1. Thus, active orogens are not char-
acterized by stable geotherms. Regardless, the calculation of steady state geotherms in
orogens may help us to estimate the maximum or minimum temperatures that can be at-
tained during an orogenic process at a given depth. This maximum or minimum possible
temperature is often called potential temperature (e.g. Sandiford and Powell 1990).

• Transient geotherms Transient geotherms are only valid for a particular point in
time. In some geological situations, transient geotherms do not increase steadily with
depth and the change of the geotherm with time can be different in different depths. For
example, after rapid stacking of nappes, rocks may simultaneously heat above a major
thrust, but cool below it.

In this section we calculate the quantitative shape of stable continental geotherms.

2.3 Stable Geotherms: The Relevant Equation

For the stable or steady state case, the heat conduction equation (eq. 6) or the full ther-
mal energy balance (eq. 8) can be simplified enough so that it is possible to find simple
analytical solutions that provide useful tools to understand the thermal structure of the
lithosphere, even without a lot of mathematical knowledge. This is therefore a good
example to familiarize ourselves with the involved thought process. Neglecting advection
(because we deal with stable geotherms) eq.8 simplifies to:

∂T

∂t
=

(

k

ρcp

)

∂2T

∂z2
+

S

ρcp
. (9)

We need the heat production term to account for radioactivity, which is of substantial
importance to stable geotherms. For steady state geotherms, there is no change of the
temperature with time. This means:

∂T

∂t
= 0 .

Eq. 9 simplifies to:

(

k

ρcp

)

d2T

dz2
+

S

ρcp
= 0 . (10)

Note that eq. 10 is no partial differential equation anymore. By canceling out of the
constants we get:

k
d2T

dz2
= −S . (11)

The integration of this equation forms the basis for all calculations of stable geotherms.
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2.3.1 Geotherms Without Radioactivity

Equation 11 may be integrated the easiest, if we neglect radioactive heat production all
together: S = 0. Eq. 11 then simplifies to:

k
d2T

dz2
= 0 or even :

d2T

dz2
= 0 . (12)

As this still is a differential equation of the second order, me must integrate it twice to
solve it. A first integration gives:

dT

dz
= C1 (13)

and a second:

T = C1z + C2 . (14)

The two integration constants C1 and C2 must be determined by the geological boundary
conditions. For example, we can assume that we know that the temperature at the surface
of Earth (at z = 0) is constant and has the value T = 0. Then, for eq. 14 to hold, C2 must
be zero so that the temperature is zero at z = 0. It we assume a thermal definition of the
lithosphere, then we can determine the other constant with the assumption that T = Tl

at depth z = zl where Tl and zl are the temperature and the depth of the base of the
lithosphere. With this assumption C1 must have the value C1 = Tl/zl. The temperature
as a function of depth is therefore described by:

T = z
Tl

zl
. (15)

Other common assumptions (instead of T = Tl at z = zl) at the model base are the
assumption of constant mantle heat flow at the Moho: q = qm at z = zc). Equation 15
describes a linear temperature profile between the surface and the base of the lithosphere.
This is not very surprising as we have assumed no heat production and no other reasons
why the temperature profile should be anything else but a straight line between the as-
sumptions at the boundaries. With a thermal conductivity of k=2–3 Wm−1 ◦C−1, and
Tl = 1200 ◦C as well as a lithospheric thickness of zl =100 km, our equation describes
a surface heat flow of 0.024–0.036 Wm−2. This value is much lower than the average
surface heat flow of the continents which is between 0.04 and 0.08 Wm−2. This is one
of the proofs of the existence of radioactivity in the lithosphere. We can easily conclude
that eq. 12 is not a very good model description and that it is wiser to integrate eq. 11
using a meaningful function that describes S as a function of depth. When we do so, we
will always assume that S = Srad, i.e. there is no other heat production sources but the
radiogenic ones. In the steady state mechanical or chemical heat production sources are
irrelevant.

2.4 Radioactive Heat Production

Radioactive (or: radiogenic) heat is produced in the Earth predominantly by the naturally
occurring radioactive isotopes 238U, 235U, 232Th and 40K. Of the two naturally occurring
uranium isotopes 99.28% is 238U and only 0.72% is 235U. All of the naturally occurring
thorium is 232Th and only 0.0119% of the natural potassium is 40K (Turcotte and Schubert
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Figure 5: a Radioactive heat production in the crust through time. Note that the heat
production in the Archaean 3 Ga ago was about twice as high as today. Also note that
U and Th are the primary heat producing elements today, but it was U an K in the past.
b Rates of radiogenic heat production in granites from the Mt Painter province, a low-
pressure high-temperature metamorphic terrain in Australia (after Sandiford and Hand
1998b). Heat production rates in other Proterozoic terrains of Australia are similar. N is
the number of data points.

element U Th K

mean mantle concentration (kg/kg) 31× 10−9 124× 10−9 31× 10−5

mean crustal concentration 1.24× 10−6 5.6× 10−6 1.43× 10−2

mantle heat production (W/kg) 3× 10−12 3.2× 10−12 1.1× 10−12

crustal heat production (W/kg) 1.4× 10−10 1.5× 10−10 0.5× 10−10

Table 2: Concentrations of heat producing elements in the crust and undepleted mantle
(after Turcotte and Schubert 2002). In granites, the heat production is about 2–3 times
higher than the values listed here. The heat productions are per kg of rock, i.e. the values
come from concentrations given in the first two rows multiplied with the heat productions
given in the text.

2002). As pure metals, these 4 isotopes produce the following amounts of heat: 238U =
9.46 × 10−5W kg−1; 235U = 5.69 × 10−4W kg−1; 232Th = 2.64 × 10−5W kg−1 and 40K
= 2.92 × 10−5W kg−1. Fortunately, the concentrations of these elements in rocks are
quite low so that substantially less heat is produced per cubic meter of rock. Table 2
lists some average concentrations of the heat producing elements in the continental crust
and in the mantle. We can see that the Earth’s mantle (oceanic crust has comparable
values) contains about 2 orders of magnitude less radioactive elements than the crust.
These concentrations are still important when considering problems related to cooling of
earth as a whole or when thinking about the vigor of mantle convection in the Archaean,
but for considerations of the heat budget of the Phanerozoic crust we need not consider
radioactivity in the mantle. However, the crustal heat production is significant: The sum
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of the values listed in this table is about 3.4× 10−10 Wkg−1, which corresponds roughly
to a heat production rate of about one µWm−3 (see eq. 43). Using typical values for heat
capacity and density of crustal rocks, S= 1 µWm−3 converts to a heating rate of of about
10◦C per million years. So the burial of highly radiogenic bodies by deformation can cause
significant heating ! In fact, most granites have substantially higher heat productions than
those listed in Table 2 and there are many terrains around the world where radiogenic
heat production rates is significantly higher than some µWm−3 (Fig. 5b; Sandiford and
Hand 1998b). Radiogenic heat production in the continental crust is responsible for about
half of the heat flow that we can measure at the surface of the Earth.

2.5 The Contribution of Radioactivity to Stable Geotherms

The radioactive heat production rate of rocks is of the order of some microwatts per
cubic meter. A typical value measured from samples at the Earth’s surface is: S =
2−5µWm−3 ≡ 2−5 ·10−6 Wm−3. The contribution of this value to the surface heat flow
is simply the heat production times its depth extent. For example, if the heat production
were constant in the entire crust of 30 km thickness (zc = 30 km) then the surface heat
flow caused by radioactivity is:

q = qs = S · zc = 0.03Wm−2 . (16)

This can be converted into a temperature gradient using eq. 1 where we have seen that
the thermal gradient has the units of heat flow divided by the thermal conductivity. If
the thermal conductivity is k = 3 Wm−1 K−1, then the assumptions from above indicate:
dT/dz= q/k = 0.05 ◦Cm−1 =50 ◦Ckm−1. This geothermal gradient of 50 ◦C per kilome-
ter is only due to the contribution of radioactivity. The mantle heat flow would have to
be added to this. Since the resulting thermal gradient would be much higher than just
about all thermal gradients measured on earth, we can conclude that the radioactivity of
rocks measured at the Earth’s surface must be higher than that of the rest of the crust.

2.5.1 The Distribution of Heat Production

The considerations above have shown that the radioactive heat production of the crust is
unlikely to be that of the surface in the entire crust. Various studies have therefore explored
the vertical distribution of heat producing elements (e.g. Cermak and Rybach 1989; Pinet
and Jaupart 1987; Pribnow and Hurter 1998; Heier and Brown 1978). The most simple
model for a heat source distribution is that the heat production is constant to the depth
zrad and zero below that. This model depth, to which the crust produces radioactive heat
at the same rate as on the surface, has been elegantly determined using the relationship
of two independent sets of data that can be measured at the surface: The surface heat
flow and the heat production rate at the surface, S0. Roy et al. (1968) explored this
relationship in the eastern US and its significance was described by Lachenbruch (1968;
1970; 1971). They found a roughly linear relationship between these two parameters
(Fig. 6). The straight line that fits these data has the form:

qs = qm + qrad = qm + zradS0 . (17)

In this equation, qs is the surface heat flow, qm is the mantle heat flow, qrad the radio-
genically produced heat flow and zrad is the thickness of a hypothetical layer in which
radioactive heat is produced at the same rate as on the surface. qm can be measured
from the intersection of the line with the heat flow axis and the value of zrad is given by
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Figure 6: Measured data of
surface heat flow qs and
surface heat production S0 in
the eastern US. The best line
that fits the data is described
by the equation
qs = 0.035 + 7 413S0.
Accordingly, the thickness of
the layer that produces heat
at a rate S is 7 413 m thick
and the contribution of
mantle heat flow to the total
heat flow is 0.035 Wm−2
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its slope. The data of Roy et al. (1968) show that zrad is about 7 km in the eastern
US. Similar considerations in other areas indicate thicknesses of 10–15 km. Of course, the
crust does not produce heat constantly in this layer and no heat at all below it, but the
relationship is useful to estimate the total heat production in the crust. This is given by
the product zradS0. This product corresponds to the area underneath the different model
curves in Fig. 7.

In order to obtain a continuous function for the rate of heat production with depth, the
most elegant assumption is the assumption that there is a continuous exponential drop off
in radioactive heat production with depth (model c in Fig. 7). This model has the great
advantage that there is no discontinuity in the heat production in the crust at zrad and we
do therefore not need several equations to describe a single geotherm. We assume that:

S(z) = S0e
(− z

hr
) . (18)

The variable hr is called the characteristic drop off or skin depth of heat production.
According to eq. 18, the heat production at depth z = hr is only the 1/e part of the
heat production at the surface S0. Our new starting equation to calculate a geotherm is
therefore:

k
d2T

dz2
= −S0e

(− z
hr
) . (19)

Before we use this equation, we make some further qualitative considerations of the be-
haviour of surface heat flow during lithospheric thickening or thinning.

• Heat flow relationships The relationship between surface heat flow, mantle heat
flow and radioactive heat production can be illustrated clearly by interpreting the surface
heat flow qs as the sum of the mantle heat flow qm and the heat flow caused by radiogenic
heat production qrad:

qs = qm + qrad . (20)

In this equation, the radiogenic heat flow is given by: qrad = Sradzrad, as we explained
when we discussed Fig. 6 (see also eq. 17). England and Thompson (1984) assumed that
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Figure 7: Four simple models describing the distri-
bution of heat production with depth in the crust
(s. Haack 1983). The total heat production of the
crust is given by the area underneath the model
curves. It is the same for all four models and is
shaded for model c. a Constant concentration in
the entire crust and no heat production in the man-
tle. b Constant concentration in the upper crust in
a layer with the thickness zrad and no heat produc-
tion below that. c Exponential drop off of the heat
production with depth. d Heat production peaking
in the middle crust.
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the radiogenically caused heat flow is comparable to the mantle heat flow (qrad ≈ qm) and
that the mantle heat flow remains unchanged, regardless of the thickness of the crust.

Thickening of the crust without thickening of the mantle part of the lithosphere doubles
the radiogenic heat flow (because zrad is doubled) but does nothing to the mantle heat
flow. We can write:

qs = qm + 2qrad . (21)

Thus, the surface heat flow in thermal equilibrium after thickening is expected to be of
the order of 1.5 times as high as before if qrad = qm (Eq. 20).

However, if the mantle part of the lithosphere thickens together with the crust (homo-
geneous lithospheric thickening), then this halves the heat flow through the Moho (as the
mantle lithosphere is thermally defined). We can then write:

qs =
qm
2

+ 2qrad . (22)

Thus, if qrad = qm and the entire lithosphere thickens to double thickness, the surface heat
flow in thermal equilibrium and after thickening would be only 1.25 times as large as the
value given by Eq. 20. If qrad = qm/2, then thickening or thinning of the lithosphere as a
whole does not change the surface heat flow at all.

2.6 Realistic Continental Geotherms

If we define the lithosphere thermally, we implicitly state that we know the temperature
at its base. An obvious choice for a lower boundary condition may therefore be: T = Tl at
the depth z = zl. This choice allows us to describe temperatures in the entire lithosphere.

2.6.1 Constant Heat Production

In a model where we assume constant heat production rate in the crust and no heat
production in the mantle part of the lithosphere, density and heat production are discon-
tinuous at the Moho. This complicates the integration of eq. 11 dramatically. We will
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not present the equations here and refer the interested reader to the original works of
Sandiford and Powell (1990) or Zhou and Sandiford (1992). However, for comparison with
the thermal model of England and Thompson (1984) we show an example of a geotherm
calculated with these assumptions as curve a in Fig. 8. We see that this model results
in unrealistically high temperatures if we assume the surface heat production rate to be
representative for the whole crust.

Figure 8: Examples of continental
geotherms calculated with a lower
boundary condition of a fixed
temperature at the base of the
lithosphere. Geotherm a was
calculated assuming constant heat
production in the crust and no heat
production in the mantle lithosphere.
Geotherm b was calculated for a
continuous, exponentially decreasing
heat production using eq. 26. The
temperature Tl is assumed to be
1 280 ◦C.
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2.6.2 Exponential Heat Production

If we assume a continuous heat production in the whole lithosphere that decreases expo-
nentially with depth, then we can derive from eq. 19 an elegant and simple description of
stable continental geotherms. After two integrations we get:

kT = −h2
rS0e

(− z
hr
) + C1z + C2 . (23)

Both constants of integration can only be evaluated after this second integration. The
second integration constant C2 is fairly easy to determine if we assume again that T = 0
at the surface where z = 0. At z = 0 the exponential term in eq. 23 goes to 1 so that C2

must be:

C2 = h2
rS0 . (24)

The lower boundary condition of T = Tl at the depth z = zl can be evaluated by rear-
ranging eq. 23:

C1 =
kTl

zl
+

h2
rS0e

(− z
l

hr
)

zl
− C2

zl
. (25)

After inserting both constants into eq. 23 we get:

T =
zTl

zl
+

h2
rS0

k

(

(

1− e(−
z
hr
)
)

−
(

1− e(−
z
l

hr
)
) z

zl

)

. (26)

Curve b in Fig. 8 is an example of a geotherm calculated with this relationship. Eq. 26
provides a realistic and useful description of stable continental geotherms and has been
presented and used by many authors.
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2.6.3 More General Formulations

In order to use eq. 26 more efficiently, it is useful to introduce two new parameters: the
vertical thickening (or thinning) strain of the crust fc and that of the lithosphere fl. A
value of fc =2 means that the crust is twice as thick as in the reference state. Using these
parameters, eq. 26 can be generalized. All we need to do is multiply the reference crustal
and lithospheric thicknesses zc and zl with their respective thickening strains. We get:

T =
zTl

flzl
+

f2
c h

2
rS0

k

(

(

1− e(−
z

fchr
)
)

−
(

1− e

(

− z
l
f
l

fchr

)

)

z

flzl

)

. (27)

This equation can be used to calculate the equilibrium temperatures at any depth for any
thickness ratio of crust and mantle part of the lithosphere.

Figure 9: Moho-temperatures
of continental lithosphere for
different crustal thickening
strains (expressed by fc) and
for different total thickening
strains of the lithosphere
(expressed by fl). The
diagram was calculated with
eq. 27 assuming z = zc. The
assumption of the parameters
are the same as in Fig. 8.
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3 Unit: Heat in Oceanic Lithosphere

Oceanic lithosphere contains practically no radioactive elements. Thus, one could think
that it is simple to describe stable oceanic geotherms. In analogy to continental geotherms
we might want to formulate the geotherm equation as:

k
d2T

dz2
= 0 . (28)

After one integration we get:

k
dT

dz
= C1 .

Using as a boundary conditions that: q = qm at the depth z = zc, (i.e. that the mantle
heat flow qm at the Moho (zc) is fixed and known) we get:

kT = qmz + C2 .

If we also assume that T = 0 at the surface z = 0, then C2 = 0 and we can write:

T = z
qm
k

, (29)

Eq.29 is our solution. However, eq. 29 is not a very good model to describe oceanic
lithosphere. A simple consideration of the time scale of conductive equilibration will show
us why: oceanic lithosphere is produced at the mid-oceanic ridges and it gets its thickness
only by its increasing age. The oldest oceanic lithosphere is about 150 my old (Fig. 10).
However, we will soon show that the time for thermal equilibration of the lithosphere
is of the order of 150 my or more! We can conclude that oceanic lithosphere is not

thermally stabilized. The assumption underlying eq. 28 is wrong. There is no thermally
stabilized oceanic lithosphere! We can not assume that dT / dt=0 and we must solve
the time dependent diffusion equation (eq. 6). This is by far not as trivial as the simple
integrations we have done for stable (time independent) geotherms above and we need to
make a little excursion into the dealing with time dependent problems.

3.1 Handling Time Dependent Problems

If we want to use eq. 6 to describe a time dependent conduction problem, we must solve
it for a given set of boundary- and initial conditions. If we try this, we would quickly
realize that this is only possible for a very few boundary- and initial conditions. Periodic
problems are some of those for which there are “real” solutions of this equation (see unit 6).
For most problems there are simply no solutions of eq. 6 possible. For example, for many
geological problems we will see that it is useful to assume that the boundary conditions
lie at infinity (at distances that are far away compared to the scale of the problem). In all
such problems, the results of integrating eq. 6 will contain a term of the form:

2√
π

∫ n

0

e−n2

dn = erf (n) (30)

This integral cannot be solved. However, because it occurs so often in solutions of the heat
flow equation, it has its own name: the error function. The values of the error function
for different values of n have been determined numerically and can be looked up on tables,
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Figure 10: The age of the ocean floor (Müller et al. 1997). Shading intervals are every
10 my from 0 (white) to 160 my (black). Ocean floor older than 160 my is black. Areas
with no data ar white. These regions are both on continental and on oceanic lithosphere.
Landmasses are grey. Oldest known parts of oceanic lithosphere are around 180 my in the
western Pacific just east of the Mariana Trench, between Madagascar and Africa and in
the westernmost Atlantic just east of the US. Compare this map also with a topography
of the ocean floor and note the similarities.

or it can be calculated with some numerical approximation. Fig. 11 shows the shape of
the error function. In many solutions of eq. 6 the variable n from eq. 30 has the form
n = z/

√
4κt. There, time t, and distance z are inside the error function and they are in a

quadratic relationship to each other. Most solutions that we will use for the description
of contact metamorphism contain error functions of this form. The complementary error
function erfc is defined as:

erfc (n) = 1− erf (n) . (31)

Solutions of the time dependent heat conduction equation very often contain error func-
tions or complementary error functions of the term erf(l/

√
4κt), where l is a spatial coor-

dinate.

3.1.1 Time Scales of Diffusion

We have seen already in the first unit that thermal equilibration is a process that is rapid
at first (when the curvature of isotherms is still large) and then slows down more and
more and the complete equilibrium is only reached after infinite time. This asymptotic
form of the equilibration may also be seen in the shape of the error function on Fig. 11.
Clearly, it is often useful to define some point in time when we call the equilibration to
be ”complete”. In order to identify such a ”time of complete equilibration”, we use the
fact that solutions of the heat flow equation often contain the term erf(l/

√
4κt). The
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Figure 11: The error function and the complementary error function. The dashed frame
in a shows the part of erf(n) that is shown enlarged in b.

shape of the error function in Fig. 11 shows that it reaches asymptotically 1 as n get very
large. Correspondingly, the term (l/

√
4κt) will reach 1 for large l (regardless of t), or for

small t (regardless of l). We can also see that – because time is in the denominator inside
the error function – complete equilibrium is reached only after infinite time (when the
term inside the brackets asymptotically approaches zero). In order to define a “duration
of equilibration” we may want to arbitrarily choose a point in the equilibration process
where the argument of the error function (for which we use n in eq. 30) is 1. This means
that:
(

l√
4κt

)

= 1 or : t =
l2

4κ
. (32)

Figure 11 illustrates that for the argument to be 1 (where t = l2/(4κ)), the thermal
equilibration is 84.3% complete. This arbitrary value is often chosen as a scaling factor
for the equilibration history where it may be said that the diffusive equilibration is “largely
complete”. In fact, because this is a only a rough measure, the ”4” is often left off this
relationship and it is written:

teq = t =
l2

κ
. (33)

The value of teq in eq. 33 is an important measure to estimate the duration of equilibration.
It is often called Thermal Time Constant or: Diffusive Time Scale of Equilibration. In
summary, the basic message of this section is:

– During conductive processes the duration of thermal equilibration increases with the
square of the length scale of the equilibrating body and inverse proportionally with the
diffusivity.

For diffusivities of the order of κ = 10−6m2s−1 this means that regional metamorphism
of nappe piles that are several tens of kilometers thick should last of the order of several
tens of my.
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Table 3: Different values of the thermal time constant teq for a series of geologically
relevant length scales l.

l teq = l2/2κ teq = l2/π2κ

10 m 5 · 107 s≈ 1.58 y ≈ 100 y 1.01 · 107 s≈ 16 weeks ≈ 10−1 y
100 m 5 · 109 s≈ 158 y ≈ 102 y 1.01 · 109 s≈ 32 y ≈ 101 y
1 km 5 · 1011 s≈ 15 000 y ≈ 104 y 1.01 · 1011 s≈ 3 200 y ≈ 103 y
10 km 5 · 1013 s≈ 1.5 my≈ 106 y 1.01 · 1013 s≈ 320 000 y ≈ 105 y
100 km 5 · 1015 s≈ 158 my ≈ 108 y 1.01 · 1015 s≈ 32 my ≈ 107 y

3.2 Aging Oceanic Lithosphere

The oceanic crust that is produced from partial mantle melts at the mid-oceanic ridges is
only of the order of 5–8 km thick. That is, it is much thinner than the continental crust.
At the mid-oceanic ridge the thickness of the entire oceanic lithosphere is that of the crust
(Fig. 12). The high potential energy of the ridges forces this crust to move away from the
ridge. As the oceanic crust ages and moves further and further away from the mid-oceanic
ridge, the asthenosphere cools and becomes part of the oceanic mantle lithosphere. It is
often said that the mantle successively “freezes” onto the base of the oceanic lithosphere
as it ages. While this describes the process quite intuitively, it is somewhat incorrect as
the asthenosphere itself is not molten. Regardless, the process of the successive cooling
of the aging oceanic lithosphere can be described with the diffusion equation using simple
initial and boundary conditions. Indeed, the description of oceanic lithosphere with these
boundary conditions has become one of the most successful models of plate tectonic theory
(s. a. Sclater et al. 1980). It is called the half space cooling model.

3.2.1 The Half Space Cooling Model

As any other problem in the theory of heat conduction, the half space cooling model
relies on the integration of eq. 6, using a set of boundary and initial conditions. These
conditions are provided by geological observation: The temperature at the surface (T − s)
of mid-oceanic ridges is that of the water temperature. For simplicity, we assume that
it is Ts = 0. Below the ridge, the mantle temperature is almost constant – convection
equalizes all temperature gradients. Thus, we can write a very simple initial condition
describing the thermal profile below mid-oceanic ridges:

– T = Ts at the depth z = 0 and:

– T = Tl in all depths z > 0 at time t = 0.

This initial condition is illustrated in T -z-diagram on the bottom right corner of Fig. 12.
For the upper boundary condition it is obvious to assume that the temperature at the
ocean floor remains constant. As there is effectively no lower boundary, we assume that
it lies at infinity and that the temperature there is T = Tl (T − l is the temperature at
the base of the lithosphere). We can write this as follows:

– T = Ts at z = 0 for all t > 0 and:
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Figure 12: Thickness and thermal profile of oceanic lithosphere at a series of points..

– T = Tl at z = ∞ for all t > 0.

(Fig. 12). The solution of the heat conduction equation for these boundary conditions is:

T = Ts + (Tl − Ts)erf

(

z√
4κt

)

. (34)

This solution is already a bit familiar to us from section 3.1 and we discuss this solution
in some more detail in sect. 4.1 (s. a. sect. 3.1). Fig. 13a shows temperature profiles
through oceanic lithosphere of different ages, that were calculated with eq. 34. The curves
correspond to the two sketches of thermal profiles in the middle and on the left of Fig. 12.
Fig. 13b shows the depth of a series of isotherms as a function of age.

Figure 13: a Temperature T versus depth profiles through oceanic lithosphere at a number
of different ages labeled in my. b The depth of isotherms (in ◦C) in oceanic lithosphere
as a function of age between 0 and 100 my. The curves on both figures were calculated
with eq. 34 assuming Tl =1280 ◦C. The age can be converted into distance from the mid-
oceanic ridge by using x = u/t where x is the distance from the ridge and u is the rifting
rate. Compare the curves also with Fig. 21 where a similar model is used to describe
intrusions.
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3.2.2 Surface Heat Flow: The Test for the Model

Temperature profiles calculated with this model for the cooling oceanic lithosphere can not
be tested directly, as we cannot drill deep enough into the oceanic lithosphere to measure
temperature in any representative way. Our observations are confined to parameters which
we can measure near the surface. One of these parameters is easy to measure and very
useful to infer the thermal profile: the surface heat flow qs (Pollack et al. 1993) (Fig. 1).
The surface heat flow is the product of thermal conductivity and the thermal gradient
at z = 0. This can be calculated from eq. 34 and can be compared with measured data in
the oceans. To obtain surface heat flow we must differentiate eq. 34 with respect to depth
and evaluate it at z = 0. From eq. 34 this is:

qs = k(Tl − Ts)
d
(

erf
(

z√
4κt

))

dz ,z=0
. (35)

As the error function itself is an integral (see eq. 30), it is easy to differentiate eq. 34
(sect. 3.1). We get:

qs = k(Tl − Ts)

√

1

πκt
. (36)

Figure 14: The surface heat
flow of oceanic lithosphere as
a function of age and therefore
as a function of distance from
the mid-oceanic ridge as
calculated with eq. 37.
Contours are for different
rifting rate labeled in cmy−1.
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This equation can be rewritten for the description of different oceanic plates with different
rifting rates. For this, we express the rifting rate u as u = x/t. There, x is the distance
from the mid-oceanic ridge and t is the age. If we replace t in eq. 36 by x/u, we get:

qs = k(Tl − Ts)

√

u

πκx
. (37)

Eq. 37 shows us that the surface heat flow as a function of distance from the mid-oceanic
ridge is a square root function of distance x from the ridge (as all other parameters in
this equation are constants). Fig. 14 shows the surface heat flow in oceanic lithosphere
as calculated with eq. 37. The heat flow data of Sclater et al. (1980) show that these
curves correspond well with heat flow measured in the deep oceans. We will show later
in this course that the half space cooling model is not only a good description for the
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temperatures and heat flow in oceanic lithosphere, but can also be used to describe the
water depth of the oceans. It can even be used to calculate the magnitude of the ridge
push force. The relationship between all these parameters that are described with the half
space cooling model is called the age-depth-heat flow relationship of oceanic lithosphere.
This age-depth-heat flow relationship corresponds fantastically well with our observations
up to an age of the oceanic lithosphere of 50 – 80 my. The age-depth-heat flow relationship
is generally accepted as one of the greatest successes of plate tectonic theory.
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4 Unit: Thermal Effects of Intrusions

Intrusion of magmatic rocks into higher levels in the crust is an important geodynamic
process that can be responsible for a large range of thermal, chemical and mechanical
changes in the crust. Intrusive rocks, as well as their contact aureoles, are familiar to
us from field observations. Thus, their geodynamic interpretations can often be tested
directly with structural and petrological data. The process of intrusion itself is a very
efficient mechanism for the transport of heat. Thus, most intrusions do not cool very
much on their intrusive path and their temperature may be used to infer the temperature
of rocks at the depth of their origin. There are two important reasons, why the quantitative
description of the thermal evolution of intrusions is quite simple:

– In comparison to the duration of a contact metamorphic event or the duration of an
orogenic cycle, the rate of intrusion is very rapid. Thus, for the thermal modeling of in-
trusions it is possible to assume that their emplacement was infinitely rapid, compared
to the time of the subsequent thermal equilibration. This is what is called an instan-

taneous heating model. The thermal equilibration of intrusions with their surroundings
can therefore be described with the heat conduction equation (eq. 6), neglecting advec-
tion.

– Most intrusions are small if compared to the size of their surroundings, for example the
distance to the surface or to the base of the lithosphere. Thus, the boundary conditions
that are needed to solve the heat conduction equation can often be assumed to lie at
infinity in comparison to the scale of the problem.

With these assumptions, it is possible to describe the temperature evolution of intru-
sions with simple step-shaped temperature distributions akin to the model for oceanic
lithosphere:

4.1 Step-shaped Temperature Distributions

The most simple of all model examples describing the cooling of rocks in the direct vicinity
of intrusions is given by the thermal equilibration of step-shaped temperature profiles in
one dimension. This example is illustrated in Fig. 15 and is one of the most useful examples
for the understanding of the cooling history of intrusions. We interpret the temperatures
on the two sides of the step as the intrusion- and the host rock temperatures; Ti and
Tb, respectively. The step itself is the intrusion contact. If we choose a one-dimensional
coordinate system in which the origin z = 0 is exactly at the contact of the model intrusion,
then the initial and boundary conditions of this equilibration problem may be described
by:

– Initial condition: T = Ti for all z < 0 and T = Tb for all z > 0 at t = 0.

– Boundary conditions: T = Tb at z = ∞ and T = Ti at z = −∞ for all t > 0.

Integration of eq. 6 using these boundary and initial conditions gives:

T = Tb +
(Ti − Tb)

2

(

1− erf

(

z√
4κt

))

= Tb +
(Ti − Tb)

2

(

erfc

(

z√
4κt

))

. (38)

We will not discuss how eq. 38 was derived (s. sect. 3.1) but when you compare this
equation to eq. 34 you will see that it is very similar and differs from the most simple form
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Figure 15: Thermal
equilibration of an initially
step-shaped temperature
distribution. The curves were
calculated with eq. 38 for
κ = 10−6 m2 s−1, Ti = 700 ◦C
and Tb = 200 ◦C. The different
curves are temperature
profiles at different times (in
years) after the intrusion
event. (The sign on the z axis
is reversed on this figure from
the equations in text). –200 –100 0 100
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of the half space cooling model only by some shifting and scaling of the error function. In
the example of eq. 38, the temperature at z = 0 stays constant in time. It has the value
Tb + (Ti − Tb)/2. If we bring all Ti and Tb to the left hand side of the equation we can
also write:

θ = 0.5erfc

(

z√
4κt

)

. (39)

in which θ = (T − Tb)/(Ti − Tb) is called the dimensionless temperature. We begin with
some geologically relevant examples that may be described with this solution.

4.2 Thermal Evolution of Dikes

One of the simplest but also most important applications of the equations introduced in
the last section is the description of the cooling history of intrusions (Jaeger 1964). As
the solutions shown above are one-dimensional, their application is particularly relevant
to the description of the thermal evolution of dikes that are narrow compared with their
lateral extent. When using the solutions described above to describe the cooling history of
dikes, it is implied that the dike extends “infinitely” in the two spatial directions normal
to the coordinate described in the cooling problem. In contrast to the previous sections,
we only need to be careful to consider both surfaces of the dike. For a coordinate system
with its origin in the center of a dike with the thickness l, the initial conditions may be
described by: T = Ti for −(l/2) < z < (l/2) and T = Tb for (l/2) < z < −(l/2) (Fig. 16).
The boundary conditions remain the same as for the step problem. With these conditions,
a solution of eq. 6 may be found to be:

T = Tb +
(Ti − Tb)

2

(

erf

(

0.5l − z√
4κt

)

+ erf

(

0.5l + z√
4κt

))

. (40)

It may be easily seen, that the solution is made up of descriptions for two opposing
step-shaped temperature profiles at z = −l/2 and z = l/2. Fig. 17 shows the thermal
evolution described by eq. 40. As the diffusion equation is a linear differential equation,
the diffusive equilibration of just about any one-dimensional geometry may be described
by the summation of solutions for various initial conditions.
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Figure 16: Schematic
illustration of the initial
condition and the variables of
the dike cooling problem of
eq. 40.

Figure 17: Thermal
equilibration of
one-dimensional intrusions,
for example magmatic dikes of
large lateral extent (calculated
with eq. 40 and labeled in
years after initial intrusion).
All parameters are the same
as in Fig. 15. Cooling curves
of rocks from a range of
distance from the dike center
are shown in Fig. 18a.
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In contrast to Fig. 15, the temperature at the intrusion contact departs from the tem-
perature (Ti + Tb)/2 after some time in Fig. 17. The contact of the dike begins to cool.
This is because the dike contact at z = +l/2 begins to follow the thermal effects of the
temperature step at z = −l/2. Correspondingly, the other dike contact at z = −l/2 cools,
because it “feels” the cooling at z = +l/2.

4.2.1 Cooling History of Dike-like Intrusions

In the following paragraphs we will use eq. 40 to infer some characteristic features of
contact metamorphism. Firstly, eq. 40 shows us that – in the absence of other thermal
processes – the maximum temperature that may be reached by contact metamorphism
is much lower than the intrusion temperature: Only at the very contact of the intrusion
the contact metamorphic temperatures may reach the half way mark between the initial
host rock and intrusion temperature. We can conclude that field observations of contact
metamorphic haloes documenting haloes of considerable width and temperature imply
that thermal processes other than conductive equilibration have played a role in their
formation (s. sect. 4.4.1).

• Cooling curves In order to interpret heating and cooling curves of rocks in the con-
tact metamorphic environment, it is useful to plot eq. 40 in a temperature-time diagram
(Fig. 18a). This figure illustrates that rocks located at different distances from the intru-
sion may experience very different cooling curves. For example, it may be seen that some
rocks cool, while others heat up, or that rocks cool with different rates. In fact, near the
contact of the intrusion, cooling curves have extremely complicated shapes including more
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Figure 18: a Temperature-time paths (cooling curves) for a series of rocks within and
within the contact aureole of a 1 km thick magmatic dike (l=1 km) shown up to 40 000
years after intrusion (all constants are the same as in Fig. 17). The figure was calculated
with eq. 40. The curves are labeled for distance from the center of the intrusion in km.
As the thickness is l=1 km, the first three curves are within the magma and the others in
the country rock. b Cooling rates for the same points as shown in a plotted against time.

than one maximum in the cooling rate (e. g. the 490-m-curve in Fig. 18a). Spend some
time and think through why these different shapes come about.

• Contact Metamorphic Peak Aside from cooling curves or cooling rates, there is even
more important information on the thermal evolution of intrusions that may be extracted
from eq. 40. For example, the time of the contact metamorphic thermal peak tTmax

for
the model of eq. 40 may also be found analytically. At the thermal peak the rate of
temperature change is zero: s|t=Tmax

= 0 (read: s at t = Tmax). From this, we can get
the thermal peak temperature and its timing as a function of distance from the intrusion.
With the resulting equations and their plots we can make some fundamental predictions
about the nature of contact metamorphism:

1. The contact metamorphic peak temperature drops rapidly with increasing distance from

Figure 19: Contact
metamorphic peak
temperature and the time of
the contact metamorphic
temperature peak of the
simple one-dimensional
intrusion from Figs. 16 and
Fig. 17. The thickness of the
intrusion l is 1 km,
Ti =700 ◦C, Tb =200 ◦C and
κ = 10−6 m2 s−1.
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the heat source.

2. The time of peak contact metamorphism increases rapidly with increasing distance
from the heat source and with decreasing metamorphic grade. This predicts that – if
contact metamorphism occurred – low grade metamorphic rocks should experience their
metamorphic peak later than high grade metamorphic rocks (Den Tex 1963).

These predictions help to infer heating mechanisms of metamorphic terrains. For example,
during regional metamorphism the relationships between grade and timing of metamor-
phism are reversed. These predictions also have some implications for th einterpretation
of Low-pressure high-temperature metamorphic terrains and we make a little excursion
into the problems of these terrains.

4.3 Low Pressure - High Temperature Metamorphism

In many regions of this planet, in particular on the Precambrian shields, we can find meta-
morphic terrains that experienced peak metamorphism at unusually high temperatures, if
compared with the depth of metamorphism. In other words, the ratio of peak pressure to
peak temperature in these terrains is much higher than that corresponding to a “normal”
geothermal gradient or that predicted by models for regional (Barrovian) metamorphism.
Such terrains are generally called “low-pressure-high-temperature”, or short LPHT- ter-
rains and the metamorphism is often referred to as “Buchan style”. LPHT terrains occur
at all grades, ranging from greenschist facies metamorphism at less than a kilobar peak
pressure (e. g. Xu et al. 1994) to granulite facies metamorphism at less than 3 or 4 kilobars
(Greenfield et al. 1998). The heat sources of metamorphism in these terrains are intensely
debated. In principal there are two fundamentally different heat sources that might be
considered: “external” and “internal” heating.

4.3.1 External Heat Sources

One school of thought argues that the T − P ratio of peak metamorphic conditions in
LPHT terrains is much too high to be possibly attainable by a conductive geotherm.
Thus, so it is argued, the heat sources must originate from “outside” the terrain under
consideration (the heat sources are: “external heat”) (e. g. Bohlen 1987; Lux et al. 1986;
Sandiford et al. 1991). Examples of external heat sources would be heat sources that are
advected from larger depths into the terrain, for example magma or fluids. This process
can be considered as “contact metamorphism” in the widest sense. The most important
arguments in support of this external heating model are:

– If the terrain was heated by conductive response of the lithosphere to a changed thick-
ness geometry of crust and mantle lithosphere, then this implies that the measured PT
ratio corresponds more or less to a geothermal gradient (curve a in Fig. 20). Typical PT
ratios of LPHT terrains imply that a geotherm would reach the base of the lithosphere
(≈ 1 200 ◦C) at a depth of about 30 km. Today, we observe such small lithospheric
thicknesses only in regions of active extension and intra continental rift zones. In con-
trast, LPHT terrains are usually characterized by convergent structures and evidence
for a plate margin setting are usually absent. Thus, alternative (external) heat sources
must be made responsible.

– In many LPHT terrains metamorphism occurred synchronously with deformation. This
observation is easily explained if external heat sources are responsible for metamor-



GEO.916: Unit 4 31

phism. However, it is in contrast with the models that explain regional metamorphism
as a function of conductive processes.

– Many LPHT terrains are characterized by isobaric cooling curves. This observation
indicates that the rate of cooling was substantially larger than the rate of burial or
exhumation. As the duration of conductive cooling of a terrain is proportional to the
square of the size of the cooling region, the rates of exhumation or burial may be used
to constrain the length scale of the heated terrain. Assuming normal rates of vertical
motion of rocks, such estimates indicate that only a region substantially smaller than
the entire lithosphere could have been affected by the LPHT event.

Figure 20: Left: Typical field appearance of LPHT terrains with multiple generations of
partial melts (some syndeformational, some post deformational) and garnet – cordierite
bearing melanosomes. Right: Three different models for the interpretation of geotherms
in LPHT terrains. a is a monotonously rising geotherm. Such a geotherm implies that
the base of the thermally defined lithosphere at 1 200 ◦C is located at a depth of only
30 km (arrow). b and c show two other possibilities for geotherms that are characterized
by LPHT metamorphism, but allow normal lithospheric thicknesses.

4.3.2 Internal Heat Sources

In contrast to the arguments presented above, another school of thought argues that
neither enough magmatic bodies nor sufficient evidence for fluid infiltration is found in
LPHT terrains to justify external heat transfer into the terrains. Thus, so it is argued,
LPHT metamorphism must have similar causes as regional Barrovian type metamorphism
(s. Harley 1989). In order to explain the exceptional peak metamorphic PT ratios a
series of models have been invoked that all are based on extremely unusual thickness
geometries of crust and mantle lithosphere. For example, extreme thinning of the crust
and the mantle lithosphere may cause conditions appropriate to LPHT metamorphism.
Another possibility that has recently received some attention is unusually high radioactive
heat production within the crust (Chamberlain and Sonder 1990; Sandiford and Hand
1998a;b). This might lead to a geotherm of the shape of curve b on Fig. 20. Spear and
Peacock (1989) discuss models of internal and external heating of metamorphic terrains
in some detail.
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4.4 Modeling Realistic Intrusions

A series of observations in contact metamorphic aureoles of intrusions show that these are
much wider and of a higher temperature than those we have predicted in the last section
even as in the two dimensional examples shown. There is two important reasons for this:

– All problems we have discussed so far have been “instantaneous cooling” problems. This
means, we have assumed that the cooling history commences at the time of intrusion.
This need not be the case. In fact, in dikes through which magma is fed into a pluton,
this would be highly unlikely. We need to describe some contact aureoles with a model
where the temperature is fixed at the intrusion contact. An example for this is illustrated
in Fig. 21.

– So far we have neglected the latent heat of fusion as part of the cooling history. This
latent heat of fusion amounts to about 320 kJ per kg of rock or roughly 8.64 ·108 Jm−3.
During crystallization of intrusions this heat is added to the thermal energy budget
available to cause temperature change and causes buffering of the cooling history.

4.4.1 Considering Heat of Fusion: The Stefan Problem

The latent heat of reaction is an important part of the heat budget of high grade metamor-
phic terrains when partial melting occurs (see sect. 5.2). As we need about 1 000 Joules
to heat one kg of rock by one degree (cp = 1000 J kg−1 K−1), the latent heat of fusion
in enough to heat a rock by about 320 ◦C (because L = 320 kJ kg−1). An intrusion of
Ti =700 ◦C, that intrudes host rocks of Tb =200 ◦C, is ∆T =500 ◦C hotter than its sur-
roundings. This corresponds to ∆Tcp = 500 000 J kg−1 additional energy that is brought
into the rock by this temperature difference. However, the total heat content of the intru-
sion (including its latent heat) that is brought into the rock is ∆Tcp+L=820 000 J kg−1.
The excess energy is therefore about 1.64 times as large as the excess temperature. This
means that we have underestimated the cooling history in the previous sections substan-
tially (s. p. 34).

If we want to describe the cooling history properly (rather than being satisfied with the
ball park estimate above) we need to consider where and when this crystallization heat

Figure 21: Temperature
profiles around a dike which is
kept at constant temperature
by the flow of magma. Curves
are labeled in my. Compare
this figure with Fig. 13 and
Fig. 15.
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Figure 22: Temperatures in
the contact aureole of a
crystallizing interface between
magma and host rock after
1 000 and 5 000 years. Note
that the contact metamorphic
aureole is wider and of higher
temperature than when only
heat conduction is considered
(Fig. 17). All parameters
assumed here correspond to
those used for Fig. 17 with the
only difference being that
latent heat is considered here. 1
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is added to the energy budget. To illustrate this, it is useful to imagine the processes
involved in the freezing of a lake (Fig. 22). During cooling of the air below the freezing
point, at first the lakes surface will freeze. The crystallization heat that is freed during
this process buffers the further freezing process. During further cooling of the surface,
the subsequent thickening of the ice layer will slow down, as the frozen layer insulates the
water to the outside and the latent heat of crystallization freed at the ice-water interface
remains contained in the water. For this reason it is rare to find pack ice on the polar
oceans that is thicker than about 2 m. In fact, it was the observation of ice on the polar
oceans that lead Stefan (1891) to describe the problem that now bears his name.

For the one-dimensional case and if the magma of a cooling intrusion crystallizes at a
single eutectic temperature, there is an analytical solution that can be used to describe
its thermal evolution under consideration of the latent heat of fusion. This is the solution
found be Stefan (1891) for the freezing of water. However, most rocks crystallize in
divariant reaction over a large temperature interval between a solidus and a liquidus
temperature, rather than at a single temperature. Then, numerical solutions of the heat
flow equation must be used to consider the effects of latent heat (s. sect. 5.2).

4.4.2 Heat Content of Intrusions and Metamorphic Terrains

If we recall eq. 3, there is a simple relationship between heat and temperature. The relating
proportionality constants are the heat capacity cp and density ρ. In fact, all problems we
have described using temperature, could have also been formulated in terms of heat using:

∂H

∂t
=

∂T

∂t
ρcp . (41)

Instead of going through many calculated examples here, we only want to state that the
heat content of an intrusion or a metamorphic terrain can be viewed – in one dimension
– as the area underneath a T − z curve. In essence, this is what eq. 3 and eq. 41 state.
In other words, the heat content of a dike of thickness l and temperature Ti relative to its
surroundings of temperature Tb is given in Jm−2 by: (Ti − Tb)lρcp. Using typical values
of ρ=2700 kgm−3 and cp =1000 JK−1 kg−1, the intrusion of Fig. 17 has a heat content
of H =1.89 · 1012 Jm−2. This is the heat content per square meter of dike surface.
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In high grade metamorphic terrains containing syn-metamorphic intrusives it is often
discussed if the volume of the intrusions is sufficient to contribute significantly to the meta-
morphism. In other words, it is discussed if the metamorphism is contact metamorphism

in the widest sense. In order to do this estimate properly, the heat content of the intru-
sives must be compared with the heat content of the terrain. If the specific heat capacities
of the intrusives and the metamorphic host rocks are the same, then the comparison of
energy contents can also be made as a comparison of the temperatures. However, we must
consider the latent heat of fusion that is part of the heat of the intrusives, but not of the
host rocks. As simple calculation shows that:

Tmax = Tb +

(

Ti − Tb +
L

cp

)

Vintrusives

Vterrain
. (42)

There, Tb and Ti are the temperature of the host rock before metamorphism and that
of the intrusion, respectively. Vintrusives is the volume of the intrusives and Vterrain is the
volume of the entire metamorphic terrain. Tmax is the maximum temperature that can be
reached by contact metamorphism.

If the aerial proportion of intrusives to host rock are representative for the volumetric

proportion of intrusives in the terrain, then the volumes of eq. 42 may be replaced by areas.
Using Ti =700 ◦C, Tb =300 ◦C, L = 320 000 J kg−1 and cp =1000 J kg−1 K−1, eq. 42 shows
the following: only about 55% of the terrain must consist of syn-metamorphic granites
in order to heat the entire terrain to 700 ◦C, even if the intrusion temperature itself was
only 700 ◦C. If the intrusives are 1 200 ◦C hot mafic magmas, then only 30% of the terrain
must be intrusives in order to heat the terrain to 700 ◦C.
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5 Unit: Production and Advection of Heat

We discern three fundamentally different geological mechanisms that produce heat:

– radioactive heat production,

– chemical heat production,

– mechanical heat production.

In the next sections we discuss the geological relevance of mechanical and chemical heat
production. Radiogenic heat production is not mentioned again as we have discussed it
already in Unit 2. In general, the rate of temperature change due to heat production may
be described by:

dT

dt
=

S

ρcp
. (43)

There, T , t, ρ and cp correspond to temperature, time, density and heat capacity as
discussed on p. 5 and S is the volumetric rate of heat production in J s−1 m−3 =Wm−3.
Heat production rate must be divided by density and specific heat to convert the volumetric
heat production rate into a rate of temperature change, just as we have done with heat
flow in section 1.2. If S is positive, heat is produced, dT/dt is positive and rocks heat up.
If S is negative, heat is consumed, dT/dt is negative and rocks cool. The heat production
rate S can be of radioactive, chemical or mechanical origin so that we can write:

S = Srad + Schem + Smec . (44)

All three of these components may have a significant influence on the thermal evolution
of rocks depending on the circumstances.

5.1 Mechanical Heat Production

The forces that deform rocks can be viewed as mechanical energy that is added to the
rock. The work done on the system is the product of force applied to the system times
the distance over which it is deformed. This energy will be taken up by a variety
of mechanical energy sinks. A part of this energy will be transformed into potential
energy, some into dislocation energy in crystal lattices, some in noise and other forms of
energy. However, most authors agree that the majority of this mechanically produced
energy will be transformed into friction heat. Frictional heating is also often referred to
as shear heating (because it is produced when rocks are sheared) or viscous dissipation.
We abbreviate this mechanical heat production with Smec. The rate of mechanical heat
production Smec is given by the product of deviatoric stress τ and strain rate ǫ̇. Stress
has the units of Pascal. One Pascal is one Joule per cubic meter (1 Pa=1 Jm−3). Thus,
stress can be expressed as energy per volume and energy is stress times volume. These
conversions between the different units should be straight forward, remembering the well-
known relationships:

force = mass× acceleration and stress =
force

area
.

The units of acceleration are m s−2 and those of force are therefore: kgm s−2. Stress and
pressure therefore have the units of kgm s−2 m−2 or Pa=kgm−1 s−2 and energy has the
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units of J=kgm2 s−2. Accordingly, if high deviatoric stresses are required to deform a
rock, a lot work is done on the system and the mechanical energy production rate is high,
and vice versa. We notice that when we rub our hands together: The harder we press
and the faster we rub, the warmer they get. Both deviatoric stress and strain rate are
tensors and the rate of mechanical heat production is therefore given by a tensor product.
Considering tangential and normal components in three dimensions, friction heat is given
by:

Smec = τxxǫ̇xx + τyy ǫ̇yy + τzz ǫ̇zz + 2 (τxy ǫ̇xy + τxz ǫ̇xz + τyz ǫ̇yz) (45)

(see e.g. Burg and Gerya 2005). Here, we consider only the one-dimensional case (and only
normal components, i.e. we neglect shear stresses and shear strain rates). Then we can
view the mechanical heat production rate as the simple scalar product:

Smec = τ ǫ̇ . (46)

In order to write the temperature change that arises from frictional heating we can write
in analogy to eq. 43:

dT

dt
=

τ ǫ̇

ρcp
. (47)

Note that eq. 47 is independent of the deformation mechanism. Both brittle and ductile
deformation mechanisms will produce the same amount of friction heat if they support
the same deviatoric stresses. We only may need to be careful with the units: Brittle faults
do not have a strain rate (in s−1) but a slip rate in meters per second. The product of slip
rate and deviatoric stress does not have the units of heat production per cubic meter, but
the units of heat flow (i.e. J s−1 m−2 normal to the fault surface) which can be converted
into a heating rate using the laws of heat conduction discussed in previous sections.

5.1.1 Geological Relevance of Shear Heat Production

A range of authors have discussed the importance of shear heating on a geologically sig-
nificant scale (e. g. Burg and Gerya 2005; Nabelek and Liu 1999; Brun and Cobbold 1980;
Lachenbruch 1980; Scholz 1980; Barton and England 1979; Graham and England 1976).
Nevertheless, its importance in many tectonic and metamorphic processes remains con-
tentious. This is because both, deviatoric stresses and strain rates on the scale of the crust
are not very well constrained and are among the most discussed geological parameters. We
can constrain shear heating to a certain degree using eq. 47 to estimate the temperature
increase a rock might experience for some realistic deviatoric stresses and strain rates.

Methods to measure geological strain rates show an upper limit of ǫ̇ = 10−12 to
10−14 s−1. These numbers imply that deformation doubles the thickness of a rock pack-
age (strain of about 100 %) within 1–10 my. The magnitude of deviatoric stresses is
much less constrained. Stress determination experiments are performed at strain rates
of ǫ̇ = 10−6 s−1 and must be extrapolated by six to eight orders of magnitude of strain
rate. The relevance of such experimental results remains therefore debated. Moreover,
deviatoric stress is strongly temperature dependent. Nevertheless, we know that the order
of magnitude of plate tectonic driving forces is between 1012 and 1013 Nm−1 and we will
show in later units that this implies a rock strength of 50–100 MPa, averaged over the
thickness of the lithosphere.
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We could also estimate shear heating as follows: If stress and strain rate remain constant
over time, then integrating of eq.47 gives:

T = t× τ ǫ̇

ρcp
. (48)

The temperature at the end of deformation for a longitudinal strain of 1 is then:
T = τ/(ρcp) (ǫ̇ · t = ǫ = 1 ). Using standard values for the density and specific heat
(ρ=2700 kgm−3 and cp =1000 J kg−1 K−1) we can see that a rock that has a shear
strength of 100 MPa will be heated by about 37 ◦C. We conclude that shear heating may
be of significant importance to the thermal energy budget of the lithosphere.

Figure 23: Visible evidence for
frictional heating. The left
photo shows network typical
of many pseudotachylites, the
right photo shows a
pseudotachylite with chilled
margin and recrystallised
center.

Examples where friction heat production has a significant influence on the temperature
of rocks are well-known to us from pseudotachylites from all crustal levels (Camacho et
al. 1995; 2001; Austrheim et al. 1996) (Fig. 23). In those, friction heat was sufficient to
even melt the rock. Pseudotachylites form during seismic events where extremely rapid
deformation occurred on a very local scale. They are therefore not very appropriate to
estimate the influence of friction heat on the thermal evolution of the entire crust where
we have to deal with averaged strain rates and averaged stresses (e. g. Kincaid and Silver
1996; Stüwe 1998a). Regardless, even significant amounts of friction heat need not be
reflected in significantly increased temperatures. Whether or not shear heating actually
becomes geologically significant on a crustal scale depends largely on 2 factors:

– 1. It depends on the relationship between the length scale of heat production (which
determines how rapidly heat may be conducted away from the site of production) and
the time scale of heat production. For example, if a 100 m thick shear zone is active
for 1 my, then the characteristic time scale of diffusion of this shear zone is of the order
of only 1 000 y. Thus, shear heat produced over a time interval of 1 my will be largely
conducted away as it is produced. In contrast, if a 15 km nappe pile deforms under
the same conditions, then its thermal time constant will be tens of my and all heat
produced within 1 my will be largely retained in the pile.

– 2. It depends on the feedback between heating and softening of rocks.

In summary we can say that shear heating is a potential candidate for significant heating
of rocks.
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5.2 Chemical Heat Production

Different rocks are characterized by different internal heat contents defined by the strength
of bonding of the atoms in the crystal lattices in the rock-forming minerals. During chem-
ical reaction, the difference in heat content between reactants and products is released or
consumed as latent heat of reaction. We abbreviate this chemically produced or consumed
heat with Schem. By far the largest majority of chemical reactions are endothermic when
the temperature increases. Because of this, temperature rise of rocks may be buffered by
the phase transition. Correspondingly, most reactions are exothermic when crossed down
temperature. However, most chemical reactions have a positive slope in a pressure-
temperature diagram. Thus exothermal reaction can not only be triggered by a decrease

in temperature, but also by an increase in pressure (at constant temperature). In very gen-
eral terms, we can chemical reactions that produce heat into three groups. In decreasing
order of importance these are:

– Phase transitions: The chemically produced heat of reactions involving phase tran-
sitions is significant to the thermal budget of rocks.

– Dehydration reactions: In the solid state, dehydration reactions are the most im-
portant producer of reaction heat (Connolly and Thompson 1989; Peacock 1989). In
the greenschist facies they produce of the order of 4 ·106 J per kg of released water.
However, rocks contain only of the order of 4% H2O and this water is being released
over quite a large temperature interval. Thus, the heat of reaction is fairly insignificant
during regional metamorphism (about 5–10 ·10−14 Wcm−3).

– Solid - solid reactions: The chemical heat production of solid – solid reaction is
negligible for geological problems.

The geologically most important reactions that involve phase transitions are the melting
reactions where the latent heat of fusion is released or the latent heat of melting is con-
sumed. As a consequence, it is important to consider reaction heat when dealing with
the thermal energy budget of migmatites and intrusions. A commonly used value for the
latent heat of melting of rocks is L=320 000 J kg−1. Evaporation and condensation
reactions are also strongly exothermic and endothermic respectively, but they are not very
important in the geodynamics of the lithosphere.

5.2.1 Quantitative Description of Chemical Heat Production

The rate of reaction heat production Schem has the same units as any other heat production
rate: Wm−3. It can be described by:

Schem = Lρ
dV

dt
. (49)

In this equation L is the latent heat of reaction in J kg−1. Since we think of the chemical
heat production rate as a volumetric heat production rate, it is necessary to multiply L
by the density ρ to convert it into a volumetric heat content. The expression dV/dt is
the volumetric proportion of the reaction that occurs per unit time (in s−1). Note that V
has the units of percent and not cubic meters. Thus, the equation determines the part of
L that is freed in every time step of the reaction. Substituting eq. 49 into eq. 43 we can
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now formulate the temperature change during chemical heat production (and neglecting
conduction) to be:

∂T

∂t
=

L

cp

∂V

∂t
. (50)

Clearly, we could add a diffusion term to this equation to simultaneously consider chemial
heat production and conductive distribution of this heat. However, as most up-temperature
reactions are endothermic and most down temperature reactions exothermic, actual heat-
ing or cooling by chemical heat production rarely occurs. Instead, this chemical heat is
more responsible for buffering the temperature increase or decrease.

Let us illustrate the buffering effects that occur during cooling and crystallisation of a
migmatite containing ten percent (V = 0.1) eutectic melts (i.e. all melt crystallises at the
solidus Ts). If this rock cools with a constant cooling rate s of s =10◦C per million years
(s = 10/(3.15× 1013)s then it can be seen directly from eq.41 that the heat withdrawal is:

∂H

∂t
= sρcp (51)

If s is constant, then this may be integrated so that the heat withdrawn after time t is:
H = sρcpt At the solidus this heat withdrawl is used to convert the ten percent melt into
rock. Volumetrically this is LV ρ (because L is typically listed per kilogram). Thus, the
time of buffering is simply:

t = LV/scp (52)

For a typical value of L = 300000 J kg−1 this gives ≈ 1014 s or about 3 million years.
After this time interval is over, all melt is crystallises and the rock continues to cool at
rate s. (Be careful not to confuse s (cooling rate) with s (SI unit seconds) here).

5.2.2 Thermally Buffered Melting

Melting during prograde metamorphism in the upper amphibolite and granulite facies is
a strongly endothermic process. Thus, the rate with which temperature increases during
metamorphism at this grade will be buffered by the melting reactions. At univariant
melting reactions, the temperature will remain constant until the phase transition from
solid reactants to liquid products is complete. It is the very same reason why we have
so much snow slush on our roads in spring: ice and water will both have a temperature
of 0 ◦C, until all ice has melted, even if the air temperature has been above freezing for
quite some time. For the same reason water will boil at a constant temperature of 100 ◦C,
regardless of the heat added by the stove, until it all has evaporated. In the buffering
interval, the amount of heat added to the rock from the outside is exactly balanced by the
amount of heat consumed by the phase transition.

Most rocks consist of many chemical components in complicated chemical systems. As a
consequence, they do not melt at a single temperature, but over a melting interval between
their solidus Ts (where the first melt appear during temperature increase) and liquidus Tl

(where the last remaining piece of rock melts) (Fig. 24).
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Figure 24: a A schematic model for the description of the relationship between melt
volume and temperature in the Solidus (Ts) - Liquidus (Tl) interval. The thick drawn line
is probably the most realistic curve for the melting of hydrated metapelitic rocks. b The
relationship between heat content and temperature in the melting interval of a melting
rock (shown between solidus temperature Ts and liquidus temperature Tl.

5.3 Advection of Heat in the Lithosphere

Heat can be transported actively by the motion of warm rocks. We discern between
advection and convection of heat. Advection is generally used if the active transport of
heat is only in one direction, for example the transport of heat by an intrusion that moves
in the vertical direction. Convection is generally used when referring to material transport
in a closed loop, for example the convection of mantle material in the asthenosphere, or
that of fluids in a hydrothermal system. In this book, we only deal with advection. One-
dimensional active transport of heat (for example in the vertical direction z), relative to
the z direction may be described by:

∂T

∂t
= u

∂T

∂z
. (53)

In eq. 53, u is the transport velocity; the derivative ∂T/∂z describes the thermal gradient
and ∂T/∂t is the change of temperature with time. For positive u, eq. 53 describes
transport against the spatial coordinate z: transport is from high z towards lower z. Eq. 53
is also called the transport equation and is equally applicable to the transport of mass,
for example during advection of concentration profiles through a crystal lattice. There are
three different important mechanisms by which heat is advected in the lithosphere that
require different methods of description. These three mechanisms are:

– advection of heat by magmas, e. g. magmatic intrusion;

– advection of heat by solid rock motion, e. g. erosion or deformation;

– advection of heat by fluids, e. g. during infiltration events.
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The difference between these three processes in terms of their mathematical description
arises mainly from the relative rates of advective and diffusive processes. These three
processes will therefore now be discussed separately.

During intrusion of magma from deeper into shallower levels in the crust, the heat of
the magma is transported to higher crustal levels by the motion of the magma itself. The
process of magmatic intrusion is - in general - much faster than most other geological
processes, for example the thermal equilibration during contact metamorphism. It is
therefore usually not necessary to describe the intrusion process itself by an advection
equation and we have dealt with this in Unit 4.

5.4 Heat Advection by Solid Rock

Any movement and deformation of rocks will carry the heat it contains with it. For
example, during exhumation of rocks by erosion, the lithosphere (and its heat) are moved
vertically upwards. The column is moved through a surface of constant temperature - the
surface of Earth. Erosion is therefore a heat advection process. In a similar way, any
other motion of rocks, for example during thrusting or folding may be interpreted as an
advective process. Here we will only discuss one-dimensional, vertical advection of heat
to and from the earth’s surface. The time scale of continental denudation processes is
comparable to the time scale of thermal equilibration on the scale of the crust and we
can therefore not neglect to consider both processes at the same time. If we want to
describe advection and diffusion of heat simultaneously, then we must expand eq. 53 by
the diffusion term from eq. 6. The equation that must be solved becomes:

∂T

∂t
= κ

∂2T

∂z2
+ u

∂T

∂z
. (54)

A schematic illustration how the two processes interact to shape a geotherm during erosion
is shown in Fig. 25. You can see that diffusion and advection interact in shaping the
temperature profile until a certain depth length scale), but that advection dominates at
larger depths (length scales).

5.5 Heat Advection by Fluids

Heat may also be advected by fluids that circulate through rocks. Heating of rocks due
to fluid advection is different from the previous examples, because only part of the rock

Figure 25: Schematic illustration of one-
dimensional advection of heat by erosion.
The coordinate system is fixed with z = 0
at the earth’s surface. Temperature profiles
through the crust are shown for two times:
at the onset of erosion t0, at which a linear
geotherm is assumed and a later time t1.
The advection rate u is positive upwards.
In the shown time interval the erosion pro-
cess advects the geotherm by u × t1 meters
upwards. Simultaneous diffusion causes the
curvature of the temperature profile.
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volume is being advected, namely the fluids that fill the pore volume. Thus, when for-
mulating an advective term in an advection-diffusion equation, we need to take care so
that we describe only the advection of a fraction of the total rock volume. In a general
one-dimensional form eq. 53 can be written as:

∂T

∂t
= φvf

(

ρfcpf
ρcp

)

∂T

∂z
, (55)

(McKenzie 1984). There, φ is the porosity of the rock and vf is the fluid flux in m3m−2s−1.
The product φvf is the fluid volume that is transported per unit time and per unit area
through the rock. This product has the units of m s−1, which corresponds to the standard
definition of fluxes. It is called the volumetric fluid flux. ρ and ρf are the densities and cp
as well as cpf are the specific heat capacities, both of the rock and the fluid, respectively.

Eq. 55 may be used to describe the thermal effects of fluid advection. However, in
many geological processes heat advection by fluids occurs on similar time scales as heat
conduction. Thus, it is usually necessary to expand eq. 55 by a term describing diffusion as
we did in eq. 55. The importance of the transport of heat by fluids for the thermal evolution
of the crust was discussed by Bickle and McKenzie (1987), Connolly and Thompson (1989)
as well as Peacock (1989). These authors agree that the fluid flux that may be caused
by metamorphic dehydration reactions is less than about 1 kg fluid per square meter and
per year. This is not enough to transport heat very efficiently by fluids. Peacock (1989)
estimated that the thermal evolution of rocks can only be influenced by fluids if these are
focused into narrow zones from regions as wide as 10 km. We can conclude that heat
advection by fluids is insignificant at least when we are interested in thermal budgets of
the crust as a whole.

5.6 The Peclet Number

In the two sections above we have seen that diffusion and advection interact at some length
scale and do not interact on others. It is therefore useful to find a measure that can be
used to estimate the relative importance of diffusive and advective processes: the Peclet
number. The Peclet number is defined as:

Pe =
ul

κ
=

ulρcp
k

(56)

where u is the rate of advection, κ the diffusivity and l the characteristic length scale of
the advection process. The second way to write the Peclet number is only inserted above
to remind us that the diffusivity is the ratio of conductivity k, density ρ and heat capacity
cp. If Pe is about 1, then diffusion and advection are of similar importance to a process.
If Pe is much larger than 1, advection dominates the process. If Pe is much smaller than
1, then diffusion dominates the process. Eq. 56 can be used to derive advection rates.
For example, on Fig. 26 isotherms have been displaced by a thrust. Consider the 400◦C
isotherm. On any length scale that is larger than l2, this isotherms is simply displaced
by the material advection of the hanging wall (i.e. Pe > 1). On the length scale of
l1 (dark shaped region) both diffusion and advection have played a role in shaping the
curved isotherm (i.e. Pe = 1). On the length scale l1 (light shaded region), diffusion has
dominated and the isotherm appears not displaced across the fault (i.e. Pe < 1).

Aside from its importance for the description of thermal processes, the Peclet number
finds many other application. For example, Bickle and McKenzie (1987) have used the
Peclet number for some fundamental interpretations about the relative importance of
diffusive and advective processes during fluid infiltration of rocks (Fig. 26).
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Figure 26: a Schematic cartoon showing the displacement of isotherms during thrusting.
Note that – within the length scale l1 – diffusion has eliminated any displacement of
isotherms across the fault, while above length scale l2 only displacement, but no curvature
is visible. b Diffusion and advection of isotopes from a layered sequence. The vertical axis
is isotope concentration, the horizontal axis is a profile across the three rock types shown.
The continuous step shaped line shows the concentrations at the time of formation. The
dotted line after subsequent diffusion (Pe < 1), the dashed line after fluid infiltration
(Pe > 1), but without diffusion (Pe = 1). The asymmetric line during both (Pe = 1)

• Temperatures around Faults In order to estimate the importance of heat advection
due to fault motion we can employ two simple tools which we have discussed in previous
sections: The thermal time constant (eq. 33) and the Peclet number (eq. 56). From eq. 56
we can estimate the length scale l where both diffusion and advection influence the thermal
structure (i.e. Pe = 1) by:

l =
κ

u
. (57)

on the lengthscale l isotherms will be bent intot the fault zone.
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6 Unit: Selected Problems of Heat Transfer

In the past five Units we have seen that hat conduction, heat production and heat advection
all can have relevance to the temperatures in the lithosphere. Eq. 8 is the full thermal
energy balance considering all these processes. When solving a heat transfer problem it
is important to see how this equation can be simplified and then solved (see: Carslaw
and Jaeger 1959). In this unit we briefly summarise how this equation can be solved in
principle and then present two selected heat transfer examples of topical relevance.

6.0.1 Analytical and Numerical Solutions

In order to make use of a differential equation we must solve it. Only then, they can be
used as a tool to extract numbers that describe some process. There are two fundamentally
different ways to solve them.

• 1. Analytical solutions Analytical or closed solutions of differential equations may
be found by integrating them. Let us consider as an example the description of a geotherm
by

dT

dz
=

1.5√
z

. (58)

There, T is temperature in ◦C and z is depth. This differential equation can be integrated
without difficulty:

T = 3
√
z + C . (59)

The integration constant C must be determined using boundary conditions. Eq. 59 is said
to be an “analytical solution of the differential equation eq. 58”. If we assume (as our
boundary condition) that the temperature at the surface is always zero and we assume
a coordinate system where the surface is at z = 0, then this constant must be also zero:
C = 0. Now eq. 59 can be used to calculate temperatures at any depth of our choice by
inserting numbers for z. For example, for z = 100 000 m eq. 59 gives T =949 ◦C.

• 2. Numerical solutions Numerical solutions of differential equations are used to ex-
tract numbers from differential equations without having to solve (integrate) them. With
their aid we can arrive at the result that eq. 58 describes a temperature of T =949 ◦C
at 100 km depth without having to solve the differential equation, i.e. without having to
go from eq. 58 to eq. 59. Great – results without having to solve the problem! However,
there is nothing such as a free lunch: numerical solutions are not exact. Numerical ap-
proximations are always approximations and they are plagued by stability and accuracy
problems. There are two important methods that are in use:

The finite element method has the advantage that it is much more elegant to use it for
the description of deformation on Lagrangian coordinates. The principal disadvantage of
the finite element method is that it is not very intuitive and therefore requires quite an
initial effort to learn it.

The finite difference method has the enormous advantage that it is quite intuitive, easy to
implement on a computer (even by inexperienced mathematicians) and easily adaptable to
many different problems. Its principal problems are those of instability, and that they are
quite cumbersome when it comes to the treatment of discontinuous boundary conditions
and deformed grids.
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• Advantages and disadvantages Numerical and analytical solutions have both their
advantages and disadvantages. The enormous advantage of numerical solutions is that
they allow us to arrive at results without having to know enough differential calculus to
be able to integrate the equation in question.

Analytical solutions have the advantage that they are much more useful to understand
the nature of a geological process. For example, eq. 59 may be used directly to infer that
the temperature in the crust rises with the square root of depth. If this model corresponds
well with our observations in nature, then we can continue to think about the significance
of this quadratic relationship. Such considerations are difficult with numerical solutions
as they only deliver numbers.

6.0.2 Initial- and Boundary Conditions

• Boundary conditions When solving differential equations, boundary conditions are
necessary in order to determine the integration constants. This is true for both numerical
and analytical solutions. For differential equations of the first order we need one boundary
condition, for those of the second order two and so on. The term boundary condition is
exactly what it implies: it is a condition at the boundary of the model. The most common
types of boundary conditions are:

– A prescribed value of the function at the model boundary (e. g. T = 0 at z = 0;
s. eq. 59),

– Neumann boundary condition: A prescribed gradient of the function at the model
boundary,

• Initial conditions Initial conditions are necessary to determine the starting point of
a model. For example, if we want to use the diffusion equation (eq. 6) to calculate the
evolution of a diffusive zoning profile over time, then we must use a function T = f(z) at
the time t = 0 from which we can start calculating. The nature of this function T = f(z)
must be determined by a known initial condition. Steady state problems usually do not
require an initial condition.

6.1 Periodic Temperature Fluctuations

The temperatures at the surface of Earth are subject to the daily or annually periodically
changing temperatures of the atmosphere. Problems where this is relevant, range from
understanding the thickness of permafrost soils, to the regulation of temperatures in tun-
nels and insulation of walls of buildings. Many of these problems can be described with
a one-dimensional coordinate system with z as the coordinate normal to the surface and
with boundary conditions that describe a periodic fluctuation of the temperature at the
surface. This may be written as:

– Initial condition: T = T0 at all z at time t = 0.

– Boundary condition: T = T0 +∆T cos(ft) at z = 0 for all t > 0, and T = T0 at z = ∞
for all t > 0.

There, ∆T is half the amplitude of the annual fluctuation, t is time and f is the frequency
of the periodic temperature cycle (Fig. 27 a). T0 is the mean temperature over one cycle.
The time dependent diffusion equation (eq. 6) can be integrated using these assumptions.
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Figure 27: The temperature in the upper few meters of the crust as a function of annually
changing surface temperature. a shows the upper boundary condition: the temperature
T as a function of time t at z = 0. The annual mean temperature was assumed to
be T0=10 ◦C. The variation about this mean was assumed to be ∆T =20 ◦C. b shows six
thermal profiles in the ground at six different times through the course of half a year.
The curves are labeled for time in years. It may be seen that below depths of about 2 m
temperatures never sink below the freezing point.

We will not go through this integration here, but the result is amazingly simple. It is
given by:

T = T0 +∆T e

(

−z
√

f

2κ

)

cos

(

ft− z

√

f

2κ

)

. (60)

This equation may be used to describe temperature fluctuations at depth as a function of
a periodic temperature variation at the surface. It may be seen that this equation contains
a trigonometric function and an exponential function. At each time t it describes a cosine
function of temperature which decays in amplitude exponentially with depth.

6.2 Isotherms and Surface Topography

An important example of a heat conduction - advection problem concerns the influence
of the surface topography on isotherms at depth. Rocks inside mountains are thermally
insulated, while rocks nearer the surface of an incising valley are cooled by the surface.
As a consequence, isotherms follow the Earth’s surface it in a damped form. Just how the
distance of a given isotherm from the surface varies with amplitude and wavelength of the
topography is of large importance for the interpretation of low temperature geochrono-
logical data in mountainous regions, for the design of ventilation systems in tunnels and
more (Fig. 28) (Braun 2002; 2006). In this section we discuss some models that can be
used to estimate the magnitude of this effect.

6.2.1 The Upper Boundary: The Topography

For simplicity we assume that the surface topography may be described by a sine-function
with the wavelength λ and the amplitude h0/2 where we interpret the wavelength λ as
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the distance between two parallel valleys and h0 as the maximum elevation of the peaks
above the valleys. Using the coordinate system illustrated in Fig. 29a,b, the elevation h
at any point of the topography is described by:

z(T=0) = −h = −h0
1

2

(

1 + cos

(

2πx

λ

))

(61)

Using such a simple function to describe topography allows us to evaluate the magnitude of
the thermal effects as a function of two simple parameters of topography: the wavelength
and the amplitude.

We also assume that the temperature along the curve described by eq. 61 is the surface
temperature Ts = 0 and neglect any atmospheric temperature gradient or seasonal varia-
tion. However, even for these simplified assumptions, integration of the two-dimensional
diffusion- or diffusion-advection equation (eq. 6 or 54) under this boundary condition is
very difficult. A common way to surround this problem is by substituting this boundary
condition of constant temperature at a variable spatial position, by a boundary condition
of variable temperature at a constant elevation, for example at z = 0. This would be
described by:

T (x)(z=0) = ∆T
1

2

(

1 + cos

(

2πx

λ

))

(62)

where ∆T = h0g and g is the geothermal gradient in the absence of topography. This
assumption implies that the thermal gradient inside the mountains is linear. ∆T corre-
sponds to h0 in the proper formulation (s. Fig. 29). This approximation is good if the
wavelength of the topography is large compared to the amplitude because then the lateral
cooling through the sides of the valley can be neglected. Note that this approximation
of the topography is actually quite a correct description if the surface temperature on a
flat shield does vary laterally, for example because of the presence of lakes. Using these
assumptions, we can discern different types of scenarios described by different solutions of
the diffusion – advection equation:

6.2.2 Topography Without Erosion

If there is no erosion, there is no advection towards the surface. As a consequence, the
topographic perturbation effect on isotherms is substantially smaller than it would be

Figure 28: Schematic illustration of
isotherms underneath topography. (a), (b)
and (c) show three different isotherms at
depth. Note that the topographic pertur-
bation of isotherms decreases with depth in
proportion to the wavelength of the topogra-
phy. Using age elevation relationships at A
and B with an isotopic system that closes at
isotherm (a) would result in an overestimate
of the erosion rate.
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in an eroding terrain. To estimate it we need to solve a two dimensional version of the
diffusion equation, subject to the boundary conditions of eq. 62. The solution is:

T(x,z) = T (x)(z=0) × e−2πz/λ . (63)

We can see from this solution a fundamental result (shown in Figs. 29b): The perturbation
of isotherms decreases exponentially with depth and in proportion to the wavelength of
the topography. The solution is a beautiful example of the elegance of analytical solutions.
Lets use the Alps and an isotherm relevant for fission track analysis (≈ 100◦C correspond-
ing to a depth of ≈ 3 km) as an example: The Alps have a topographic amplitude of about
3 km and a series of topographic wavelengths from about λ ≈ 2 km in the most rugged
regions to λ ≈ 200 km from the northern to the southern Molasse basin. Inserting these
numbers into the exponential term of eq. 63 shows that the narrow wavelengths are just
about invisible for the 100◦C isotherm, while 90% of the longest wavelength is preserved
at 3 km depth. This caused Brown (1991) to conclude the interpretation of age – elevation
profiles from apatite fission tack data may be done without topographic correction.

6.2.3 Eroding Topography

During erosion material is advected towards the surface, isotherms are compressed into
the topography and the amplitude of a given isotherm is substantially larger than when
no erosion occurs. To estimate the perturbation effect quantitatively we need to solve a
two dimensional form of the diffusion – advection equation (eq. 54). This equation may
be expanded into two dimensions and modified to account for the variable boundary at
the top surface. Solutions typically show the same fundamental relationship discussed in
connection with eq. 63, namely that the effect decreases exponentially with depth and
in proportion to the wavelength of the topography. However, depending on the erosion
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Figure 29: Isotherms underneath regions of high topographic relief. b, c and d show two-
dimensional profiles through a mountainous topography. The two isotherms in b are for a
non-eroding topography calculated with eq. 62 and adding a linear thermal gradient to the
solution to place the different isotherms at the correct depths. c shows a thermal steady
state case for an eroding topography. In d the time dependent evolution underneath an
eroding topography is shown for a single isotherm, in this case 100 ◦C. The two black dots
in a and b are at equal depth, but they have a different temperature.



GEO.916: Unit 6 49

Figure 30: Example
of a three dimensional
conduction-advection
model to consider to-
pographic perturbation
effects on topography
(Hergarten and Stüwe in
prep). For this example,
the digital elevation model
of the Gotthard region
was interpolated onto a
three dimensional grid to
consider thermal effects
important for ventilation in
the longest road tunnel on
earth: the Gotthard base
tunnel.

50°C
1640m

200°C
7265m

rate, the advection processes may be strong enough to perturb isotherms of geological
relevance. Stüwe et al. (1994) found a semi-analytical solution of the two-dimensional
diffusion-advection equation to describe this problem (Fig. 29c and 28). They concluded
that at erosion rates above 500 m my−1 it becomes important to consider the topographic
effects on the interpretation of apatite fission track results.
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7 Unit: The Elevation of Mountains

Isostasy is a stress balance. Isostasy relates the vertical distribution of mass to elevation
in a state of equilibrium in which the lithosphere is considered to be floating on the
underlying relatively weak asthenosphere. Isostasy does a good job of explaining the first-
order variation of elevation over most of the Earth’s surface. When we consider isostatic
equilibrium it is useful to discern:

– hydrostatic isostasy and

– flexural isostasy.

Hydrostatic isostasy is a stress balance in the vertical direction only. Thus, hydrostatic
isostasy is a model that should really only be applied to regions that are large compared
to the elastic thickness of the lithosphere. In other words, to geological features that are
of at least several hundreds of kilometers in extent, i.e. areas like the Tibetan Plateau
or the Canadian Shield. Flexural isostasy describes a stress balance in two or even three
dimensions (s. Fig. 31). As a consequence, flexural isostatic considerations can be used
to interpret the shape of much smaller scale features, for example foreland basins or
subduction zones.

q
qba

Figure 31: Illustration of the difference between a hydrostatic isostasy and b flexural
isostasy. In a all vertical columns are considered independently of each other. In b the
shear stresses between vertical columns are akso considered. q is the load.

7.0.4 Isostatic Equilibration Rates

Isostasy describes an equilibrium state and is therefore independent of time. Nevertheless,
many geologists misinterpret the temporal evolution of isostatic rebound as a feature
inherent to isostasy. For example, we observe that isostatic equilibrium of Scandinavia in
response to its deglaciation in the last ice age, occurs on a time scale of 104 years (e. g.
Sabodini et al. 1991). Such isostatic compensation rates can be measured, for example by
dating raised beaches (Fig. 32). However, this observation does not tell us that isostasy
itself is time-dependent. Isostasy is a stress balance and as such independent of time.
If a plate tries to rise or sink to reach its isostatic equilibrium state in response to a
changed load, it has to displace the underlying asthenosphere. Thus, the rate of isostatic
compensation can be used to estimate the viscosity of the asthenosphere (e. g. Lambeck
1993).
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Figure 32: Observed and interpreted sea level changes. a Typical evolution of surface
uplift relative to sea level in regions of recent deglaciation, for example Scandinavia (e. g.
Lambeck 1991). Such curves typically contain two distinct parts and may be interpreted
as the sum of sea level rise due to deglaciation (curve b) (because of increased water mass
in the oceans) and sea level drop because of isostatic rebound (curve c). From such curves,
mantle viscosities of the order of 1020 Poise have been calculated.

7.1 Hydrostatic Isostasy

The hydrostatic isostatic model is based on the assumption that all vertical profiles through
the lithosphere may be considered independently of each other. That is, shear stresses on
vertical planes are neglected (Fig. 31a). Then, there will be a depth at which the vertical
stresses of all vertical profiles are equal. This depth is called the isostatic compensation

depth. At this depth, the weight of all columns are equal. If you dive underneath a boat
you dive beneath this isostatic compensation depth: Regardless if the boat is above you
or not, the water pressure is the same. If we consider two profiles A and B, the isostasy

condition may be formulated in terms of an equation (s. Fig. 33):

σA
zz|z=zK = σB

zz|z=zK . (64)

In this equation σA
zz and σB

zz are the vertical normal stresses of the two columns A and
B and the depth zK is the isostatic compensation depth. The vertical dash stands for
“at the location”. For most geological purposes we want to compare the elevation of two
neighboring lithospheric columns in isostatic equilibrium. For this, it is useful to assume
as isostatic compensation depth the shallowest possible depth below which there is no
density differences between two neighboring columns. For most examples this can be
assumed to be the base of the lithosphere of the column which reaches deepest into the
asthenosphere.

The downward force that is exerted by one cubic meter of rock is given by the product
of its mass × gravitational acceleration. The downward force that is exerted by an entire
vertical column per square meter (the vertical normal stress) is thus the product of density
and acceleration integrated over the thickness of the column:

σzz

∣

∣

∣

z=zK
=

∫ zK

0

ρgdz . (65)

Inserting eq. 65 into eq. 64 gives:
∫ zK

0

ρA(z)gdz =

∫ zK

0

ρB(z)gdz , (66)
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Figure 33: Illustration of isostatic equilib-
rium. Note that the z-axis is defined posi-
tively downwards and has its origin at the
surface of the light shaded block (e.g. an
iceberg or the lithosphere) that is assumed
to float in a dark shaded region of higher
density (e.g. water or the asthenosphere).

c

where ρA(z) and ρB(z) are the densities of the two columns that are to be compared, both
as a function of depth, z. Within the coordinate system shown in Fig. 33, the lower limit
of integration 0 corresponds to the upper surface of the higher of two columns that are to
be compared. The upper limit of integration is the isostatic compensation depth zK. g
is the gravitational acceleration. Eq. 66 is the basis of all calculations of isostasy. When
considering the isostatically supported elevation of a mountain belt, it is useful to divide
the density variations in the lithosphere into two parts (a) density variations that are due
to material differences and (b) density variations that are caused by thermal expansion.

7.1.1 Isostasy due to Material Differences

We begin by solving the balance written out in eq. 66 for the elevation of a single litho-
spheric column above the asthenosphere. For simplicity we forget in the first instance
about the mantle part of the lithosphere and consider the crust only so that zK = zc
(Fig. 33). The block in Fig. 33 has a constant density ρc (e.g. density of the crust) and
floats in a denser medium of the constant density ρm (e.g. density of the mantle). We call
its elevation above the surface of the denser medium Hmat, although it is just labeled as
H in Fig. 33. We use the subscript mat to emphasize that – for now – we consider only the
material contribution to density differences between the profiles A and B. The densities
and the acceleration are independent of z. Thus, they can be drawn out of the integrals
on both sides of eq. 66 and integration is easy. By integrating the left half of the equation
and splitting up the right half of eq. 66 we get according to Fig. 33:

ρcgz
∣

∣

∣

zc

0
= g

∫ Hmat

0

ρairdz + g

∫ zc

Hmat

ρmdz . (67)

The density of air is negligible in comparison with ρm or ρc. Thus, the first integral on
the right hand side of eq. 67 is also negligible. After finishing the integration, canceling
out g and inserting the integration limits we get:

ρczc = ρmzc − ρmHmat . (68)

Solving for elevation H gives:

H = Hmat = zc

(

ρm − ρc
ρm

)

. (69)

This relationship describes the hydrostatically balanced elevation of the surface of a float-
ing body above the medium it floats in. Remember that H = Hmat emphasizes the fact
that this elevation difference is only based on the material difference between the block
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Airy Pratt

Figure 34: Comparison of the interpretations of the isostatic model according to Airy and
Pratt. The shading indicates density. Darker shading means higher density.

and the liquid. We can control this equation for some end member scenarios: If ρc is
zero, then this equation states that H = zl: the entire column floats on top of the liquid.
This is the scenario given by a kids balloon floating on a lake. Alternatively if the two
densities approach each other (ρm = ρc), then the entire body is submerged (H = 0). This
is the scenario we observe with water soaked logs that float almost completely submerged
in water. We can conclude that our observations confirm the simple model.

7.1.2 Isostasy According to Airy and Pratt

Two centuries ago, different models were developed to explain elevation differences ob-
served in the mountain belts of the world in terms of the isostasy model. The two most
notable models are those of Airy and Pratt (Fig. 34). Both earth scientists recognized
that mountain belts are likely to rest in isostatic equilibrium and that their elevation is
proportional to the density contrast between crust and mantle, as expressed by eq. 69.
Pratt observed that many low lying Proterozoic shields are made up of high grade meta-
morphic rocks of high density, while mountain belts are often made up of hydrated, low
grade metasediments and carbonates. He concluded that most continental crusts extend
to roughly similar depths and that the observed differences in surface elevation are the
consequence of horizontal density variations in the crust.

In contrast, Airy estimated that the density of the crust is largely the same in all
continental regions and therefore concluded that topographically higher regions, must be
compensated by crustal roots at depth. Seismic studies in many mountain belts show
that most regions of high surface elevation are indeed compensated by significant roots at
depth.

7.1.3 Isostasy Due to Thermal Expansion

In order to calculate the contribution of thermal expansion to surface elevation we need
to introduce α: the coefficient of thermal expansion. α has the units of strain per
temperature increment, which is K−1. For most rocks the coefficient of thermal expansion
is of the order α = 3 · 10−5 K−1. Using α and the density of the mantle ρm (at the
temperature of the asthenosphere), the density of colder rocks of the same material as a
function of temperature may be calculated with:

ρ(T ) = ρm(1 + α(Tl − T )) . (70)

There, Tl is the temperature at the base of the lithosphere at z = zl. According to eq. 70:
ρ = ρm, where T = Tl. At lower temperatures, the density increases linearly. At the
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surface, where we can assume that the temperature is Ts =0 oC, eq. 70 becomes:

ρ(T=Ts) = ρ0 = ρm (1 + αTl) . (71)

If the density of the mantle is about ρm=3200 kgm−3 at Tl, then the density at the surface
is: ρ0=3300 kgm−3. Assuming a linear geotherm in the lithosphere, we can describe the
mean density of the lithosphere with:

ρ = ρm

(

1 + α
Tl + Ts

2

)

. (72)

In order to estimate which proportion of the elevation of a mountain belt is due to thermal
expansion (Htherm), we insert eq. 72 into the left hand side of eq. 66. The following algebra
remains the same as in eq. 67 and eq. 68 except that the upper limit of integration is not
the base of the crust, but the base of the lithosphere, because thermal expansion and
contraction affects the entire lithospheric column. After integration according to the same
principles as we did before we get here:

Htherm = −zlα(Tl + Ts)/2 . (73)

The negative sign arises because ρ is larger than ρm.

7.1.4 The Elevation of Mountain Belts

First off a warning: Gravimetric data tell us that many active orogens are not in isostatic
equilibrium, but that their topography is dynamically supported. This means the surface
elevation is actively held up or pushed down and is out of isostatic equilibrium. Dynami-
cally supported topography may generally be found on length scales that are comparable
to the elastic thickness of the lithosphere and will be discussed there (e. g. Forsyth 1985;
Lyon-Caen and Molnar 1983; Molnar and Lyon-Caen 1989). It is therefore emphasized
that the model of hydrostatic isostasy should only be used for topographic features that
are at least some hundreds of kilometers in lateral extent. For example, the European Alps
are barely 200 kilometers across and are only partly compensated isostatically (Karner and
Watts 1983). This limitation of the hydrostatic model should be kept in mind when we
interpret the simple considerations below.

Nevertheless, let us now consider the elevation of a lithosphere with the thickness zl
and a crustal thickness of zc above its surroundings considering both the influence of the
different materials and the influence of thermal expansion. The higher density of the cold
lithosphere provides a negative contribution to the overall buoyancy (eq. 73). The material

contribution of the crust to the elevation, on the other hand, is positive and was derived
in eq. 69. Density variations within the mantle part of the lithosphere are neglected here.
Then, the isostatically supported surface elevation relative to the surroundings is given be
the sum of the thermal and the material contributions:

H = Hmat +Htherm = zc

(

ρm − ρc
ρm

)

− zlα(Tl + Ts)/2 . (74)

If we summarize all the material parameters into the constants:

δ = (ρm − ρc)/ρm and : ξ = α(Tl + Ts)/2 , (75)
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then this eq. 74 simplifies to:

H = δzc − ξzl . (76)

If we insert meaningful numbers into eq. 74 (e. g. ρm =3200 kgm−3, ρc =2700 kgm−3),
we get:

δ ≈ 0.15 and : ξ ≈ 0.018 . (77)

This implies that the influence of material difference between crust and mantle, per meter
of lithospheric column, is about ten times more important to the isostatically supported
surface elevation than the influence of the thermal expansion. However, because the crust
constitutes only about one third of the lithosphere, the crustal material contribution to the
elevation is in total only about 3 times larger than the contribution of thermal contraction,
which applies to the whole lithosphere. In total, H is about 3 600 m.

This is the elevation of the upper surface (of a lithosphere with zc and zl as above) above
the hypothetical surface of a liquid mantle, as we illustrated in Fig. 33. Mid-oceanic ridges
are the only place on the globe where we can measure the depth of this reference level.
It turns out that mid-oceanic ridges lie indeed about 3 600 m below the average elevation
of the continents and lie at a very constant depth below sea level (Turcotte et al. 1977;
Cochran 1982).

Figure 35: Isostatically
supported surface elevation of
mountain belts in the
fc-fl-plane (in km with
eq. 78). Following
assumptions were used:
ρm =3200, ρc =2750,
α =3 · 10−5, zc =35 km,
zl =100 km. Using these
values, the two constants are:
δ ≈ 0.14 and ξ = 0.018.
Typical orogenic evolutions
are superposed.
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In most geological problems it is much more interesting to know the elevation of a
mountain belt above its surroundings, rather than above the mid-oceanic ridges. For this
purpose, it is useful to reformulate eq. 74, so that the elevation is given as the eleva-
tion difference between a thickened (or thinned) lithosphere and an undeformed reference
lithosphere:

H = (δfczc − ξflzl)− (δzc − ξzl) = δzc(fc − 1)− ξzl(fl − 1) . (78)

The parameters fc and fl describe the thickening strains of the crust and the mantle
lithosphere. The elevation of isostatically supported mountain belts above the undeformed
reference lithosphere is shown in Fig. 35 (for the concept of an undeformed reference
lithosphere see: Le Pichon et al. 1982). More detailed assumptions about the thermal
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expansion have no influence on the surface elevation (e. g. Zhou and Sandiford 1992).
Fig. 35 shows clearly that homogeneous thickening of the entire lithosphere (a diagonal
line from bottom left to top right in this diagram) causes relatively small changes of the
surface elevation, because the two contributions in eq. 76 and eq. 78 have opposite signs.
Accordingly, the negative buoyancy caused by the thickening of the mantle part of the
lithosphere is largely compensated by the positive buoyancy of the thickened crust. It
may also be read from this figures, that doubling of the crust, without thickening of the
lithosphere would imply an isostatic uplift of about 3–4 km.
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8 Unit: The Depth of the Oceans

The water depth of the oceans In isostatic equilibrium) is a direct function of the distance
to the mid-oceanic ridges. The functional relationship between water depth and distance
from the mid-oceanic ridge was described with a fantastically simple model by Parsons and
Sclater (1977). Their model is one of the largest successes of the theory of heat conduction
and we have discussed it already in unit 3.

Oceanic lithosphere consists (except for a thin 7 km thick crust) largely of astheno-
sphere material that has cooled to form lithospheric mantle. Because of the small and
constant thickness of the crust, material contributions to density variations may be ne-
glected and thermal expansion (contraction) is the governing factor for variations in the
density structure. In order to use this density variation to estimate the isostatically sup-
ported elevation of the ocean floor, we use the model sketched in Fig. 36. According to
eq. 66 the vertical normal stresses of the columns A and B must be the same in the com-
pensation depth z = zl. For column A the vertical normal stress at depth z = zl is given
by:

σA
zz|z=zl = ρwgw +

∫ zl

0

ρ(z)gdz . (79)

There, w is the water depth in column A, ρw is the water density, g is the gravitational
acceleration and ρ(z) is the density of the lithosphere as a function of depth. For column B
we can formulate:

σB
zz|z=zl = ρwgw + ρmgzl . (80)

(see Fig. 36). After inserting eqs. 79 and 80 into eq. 66, the isostasy condition of gets the
following form:

ρmzl + w(ρm − ρw) =

∫ zl

0

ρ(z)dz . (81)

With foresight to the following steps, we bring the first term of this equation to the right
hand side, find its derivative with respect to z and write it therefore into the integral.
Eq. 81 gets the form:

w(ρm − ρw) =

∫ zl

0

(ρ(z) − ρm)dz . (82)

A B
z w= –

rm

rw

r( )z

w
z = 0

z z= l

Figure 36: Schematic profile through a mid-oceanic ridge and the oceanic lithosphere
as used for the calculation of water depth. The oceanic crust is neglected because it is
everywhere of the same thickness.
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Figure 37: Profiles of water
depth as a function of
distance from the mid-oceanic
ridge as calculated with
eq. 86. The curves are shown
for different rifting rates in
my−1. Following constants
were used: ρm =3200 kgm−3,
ρw =1000 kgm−3,
α = 3 · 10−5 K−1,
Tl = 1280 oC, Ts =0 oC and
κ= 10−6m2s−1
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This equations states that the water depth is dependent on the density structure as a
function of depth ρ(z). In oceanic lithosphere this density function is a direct function of
the temperature profile. Thus, if we know the temperature as a function of depth, then
ρ(z) in eq. 82 is known, because we know already the relationship between density and
temperature from eq. 70. Thus we can begin by inserting eq. 70 into eq. 82:

w(ρm − ρw) =

∫ zl

0

ρmα(Tl − T (z))dz . (83)

The variable T (z) is the only unknown in this equation, but it is well-described by the
half-space cooling model and we determined it in sect. 3.2. . Thus, the temperature profile
of eq. 34 may be directly inserted into eq. 83. We get:

w(ρm − ρw) =

∫ zl

0

ρmα(Tl − Ts)erfc

(

z√
4κt

)

dz (84)

or, after taking the constants out of the integral and solving for w:

w =
ρmα(Tl − Ts)

(ρm − ρw)

∫ zl

0

erfc

(

z√
4κt

)

dz . (85)

This is not too difficult to solve and results in:

w =
2ρmα(Tl − Ts)

(ρm − ρw)

√

κt

π
. (86)

If we insert standard values for all the constants in this equation we get:

w ≈ 5.91 · 10−5
√
t . (87)

In words, the depth of the water is proportional to the square root of age of the oceanic
lithosphere. Note that this water depth is only the additional water depth on top of the
water depth at the mid-oceanic ridge (Fig. 36). We can convert this into water depth
as a function of distance from the mid-oceanic ridge if we substitute age by the ratio of
distance to rifting rate: x/u, (which is also age). Fig. 37 shows some water depth profiles
calculated with this equation. The fantastic coincidence of these curves with bathymetric
measurements in the oceans of the world confirm the model.
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8.1 Flexural Isostasy

Most topographic features of our planet that are less than many hundreds of kilome-
ters across are not completely in hydrostatic isostatic equilibrium. This includes whole
mountain ranges like the European Alps (Karner and Watts 1983; Lyon-Caen and Molnar
1989) and can be measured gravimetrically: Gravimetry measures mass and in isostatic
disequilibrium the total mass above the isostatic compensation depth is not everywhere
the same. Thus, gravity anomalies may be interpreted in terms of the degree of isostatic
disequilibrium. Isostatic disequilibria may form in response to a large range of processes.
For example, a continental plate may be actively pushed downwards by the load of an-
other plate, or it may be actively held up by mantle convection exerting an upwards force
to the bottom of a plate. Topographic features that are created by non-isostatic pro-
cesses are called: dynamically supported. Flexural isostasy is a stress balance that also
considers horizontal elastic stresses (Fig. 31b). Flexural isostasy is therefore at least a
two-dimensional stress balance. It may be used to interpret surface topography in terms
of both, hydrostatic balance and elastic flexure.

8.1.1 Examples of Elastic Deformation

Although it may not be intuitive that rocks can be elastic, there are quite a few observa-
tions that show us that they are! For example, regular spacing between joints and other
cracks is a function of the elastic behavior of rocks and the continuous versus discontin-
uous displacement across seismically active structures is an elastic deformation that can
be measured even with GPS measurements. Elastic strains are of the order of about one
per mil at the most.

• Examples in oceanic lithosphere Oceanic lithosphere is rheologically stronger than
continental lithosphere and is therefore little internally deformed. It has a very uniform
thickness and a largely flat surface. As a consequence, plate scale elastic features that
develop in response to vertical loads may spectacularly be seen without much disturbance
by features created by other deformation mechanisms. The best known example for elastic
deformation of the oceanic lithosphere are the valleys around sea mounts, for example
around the Hawaii-Emperor chain. They were created by hot spots that have their origin
deep inside the mantle (Fig. 38). The volcano may be considered as an external load to
a plate of more or less constant thickness that bends it downwards. Another example of
elastic deformation of oceanic lithosphere is the bending of the plates at subduction zones.
The shape of trenches and the fore bulge on the seaward side of the trench are also the

consequence of elastic bending of the plate.

• Examples in continental lithosphere The elastic bending of continental plates may
be observed in the foreland of many collisional orogens, where molasse basins form as the
consequence of the elastic deflection of the plate in response to the load of the mountain
belt. One of the best know examples is the northern molasse of the European Alps. There,
the European Plate is bent downwards under the load of the alpine mountain chain. The
deepest point of the deflection is the valley of the river Donau. However, in collisional
orogens the external load applied by the weight of the mountain belt is partly compensated
by an internal loads: the root of the mountain belt.

Passive continental margins also show often evidence for elastic bending of continental
lithosphere (Fig. 42). The best known examples for this are the great escarpments along
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the coasts of southern Africa and Australia (Tucker and Slingerland 1994; Kooi and Beau-
mont 1994). There, the unloading of the plate that is caused by the asymmetric erosion of
the continental margin is compensated by elastic updoming of the coastal foreland. The
Australian Great Barrier Reef, for example, may be interpreted as an elastic fore bulge
similar to those observed in the vicinity of subduction zones (Stüwe 1991).

8.1.2 The Flexure Equation

Elastic deformation describes an empirically derived constitutive relationship in which
stress and strain are proportional to each other. The proportionality constant between
stress and strain is called the modulus of elasticity or Young’s modulus E. How much
a plate bends under an applied stress depends on E and its compressibility, which is
described by the Poisson ratio ν.

Let us now consider the bending of a simple, ideal elastic plate like the one sketched
in Fig. 39. We also neglect buoyancy forces for now. When integrating the horizontal
normal stresses σxx, over the thickness of the elastic plate h, then it may be shown (or
even intuitively seen) that the bending moment M is proportional to the curvature of the
plate (s. Fig. 39):

M = −D
d2w

dx2
. (88)

In this equation, w is the vertical deflection of the plate and the constant of proportional-
ity D is called the flexural rigidity of the plate. The bending moment M is the integrated
torques on both sides of the load.

Eq. 88 may be coupled with a force balance equation that relates bending moments, the
vertical load q, any applied horizontal forces F and the shear forces (s. Fig. 39) to each
other (s. Turcotte and Schubert 1982; Ranalli 1987). This is called the one-dimensional
flexure equation and is:

D
d4w

dx4
= qx − F

d2w

dx2
. (89)

There, qx is the vertical load as a function of horizontal distance x and has the units of
force per area: stress. Thus, if the distribution of loads is known, this equation may be

Figure 38: Flexure of oceanic
lithosphere due to the loading
of a sea mount.

hot spot

water

oceanic plate

x

w
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Figure 39: Bending of an ideal
elastic plate in a simplified
model view which is useful
for the description of bending
lithospheric plates.
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solved for either the deflection of the plate w or for its flexural rigidity D (in N × m).
Usually, the deflection is well known from bathymetric or topographic observation and
eq. 89 is used to derive the rigidity or “stiffness” of the plate. This flexural rigidity is a
direct function of the elastic material properties of an ideal elastic plate of thickness h and
is related to these by:

D =
Eh3

12(1− ν2)
. (90)

Thus, if the material constants E and ν are known and the flexural rigidity of a plate was
derived from modeling its shape using eq. 89, then this may be converted directly into an
elastic thickness of the lithosphere using eq. 90. All descriptions of the bending of elastic
plates are based on the integration of eq. 89, or its two-dimensional equivalent.
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Figure 40: Distribution of loads during the elastic bending of lithospheric plates.

8.1.3 Application to the Lithosphere

Eq. 89 may be directly applied to describe flexural isostatic equilibrium, i.e. the elastic
bending of lithospheric plates under external and internal loads. When we do this, we
need to be aware of some important points:

1. The flexural rigidity D must be interpreted correctly. Field observations tell us that
the rigidity of lithospheric plates is of the order of D ≈ 1023 Nm (± about one order
of magnitude) and laboratory experiments show that the material constants are about
E ≈ 1011 Pa and ν ≈ 0.25. According to eq. 90 these parameters imply that the elastic
thickness of the lithosphere h is only some tens of kilometers. Thus, the elastic thickness
of the lithosphere is much thinner than the lithosphere according to thermal or mechanical
definitions. The elastic thickness must be considered as the theoretical thickness of a plate
with homogeneous elastic properties. Considering that the brittle strength of the upper
crust as well as the ductile strength of the lower most lithosphere are likely to be very
small, it is only the central part of the lithosphere that is dominated by elastic behavior.
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2. The distribution of loads on the plate must be thought through. The load as a
function of distance qx as used in eq. 89 is the sum of a series of internal and external

loads that act upwards and downwards onto a plate. In order to clarify which different
forces act on the plate, it is useful to divide the plate under consideration according to
the scheme illustrated in the right hand part of Fig. 40. There, it may be seen that
the downward force exerted by the mountain range on the plate is given by the vertical
normal stress qext = ρcgH. This is the external or the positive load. This load is
opposed by a buoyancy force in the region of the displaced mantle. This is the internal

or negative load shown on Fig. 40 with the upwards arrows. This internal load has the
magnitude qint = (ρm − ρc)gw, where w is the deflection of the plate. The net load that
is applied to the plate is therefore:

q(x) = qext − qint = ρcgH(x)− (ρm − ρc)gw . (91)

Note that the load is here already expressed as a function of horizontal distance x. If
eq. 91 is inserted into eq. 89, this may be solved for w numerically or – for some simple
boundary conditions - also analytically.

8.1.4 Applications to the Oceanic Lithosphere

A series of elastic bending problem in the oceanic lithosphere may be well-described with
eq. 89 if two simplifying assumptions are made:

– 1. We assume that there are no horizontal forces applied to the plate. Then, the entire
last term of eq. 89 is zero.

– 2. We assume that the vertical load is only applied at a single location at the end of
the plate; i.e. there is no dependence of the load on x.

Based on the second assumption, and assuming that the downwards deflected region is
filled with water, eq. 91 simplifies to:

q = qa − (ρm − ρw)gw . (92)

as illustrated on the very left hand edge of Fig. 40 (ρw is the water density). Eq. 89
simplifies to:

D
d4w

dx4
= −(ρm − ρw)gw . (93)

Eq. 93 describes a range of geological features surprisingly well and has the great advan-
tage that it may be integrated analytically for a range of geologically relevant boundary
conditions. After integration, the constants D, g, ρm and ρc often occur in the following
relationship:

α =

(

4D

g(ρm − ρw)

)1/4

. (94)

α is called the flexure parameter of the lithosphere.
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• Seamount chains The first example we want to discuss is that of a line-shaped
load of islands on a continuous plate of constant thickness. For appropriately formulated
boundary and initial conditions (e.g. the load applies only at x = 0, symmetry of the
deflection so that dw/dx=0 at x = 0 and others) a solution of eq. 93 is:

w = w0e
−x/α (cos(x/α) + sin(x/α)) . (95)

There, w0 is the maximum deflection of the plate directly underneath the load and w is
normalized to this value (we can see from eq. 95 that w → w0 for x → 0). Interestingly,
the maximum deflection w0 is given by:

w0 =
qα3

8D
. (96)

Eq. 95 is a good approximation for the description of the water depth around the Hawaii
and Emperor Island chains (s. Fig. 41a). The equation is also historically important, as is
was one of the first models used to estimate the elastic thickness of the lithosphere using
the bathymetric surveys around Hawaii.

• Trench morphology The second example that may be described with the approx-
imation of eq. 93 is the shape of oceanic lithosphere near trenches. There, the loading
of the subducting oceanic plate may be viewed as a line-loading by the margin of the
upper plate. For this case, boundary conditions must be assumed that describe a broken
half plate which is subjected to a load at its end. For appropriately formulated boundary
conditions a solution of eq. 93 is:

w = w0e
−x/α (cos(x/α)) . (97)

The shape of plates as described by eq. 97 is illustrated in Fig. 41b. Note how similar
this solution is to eq. 60: They both describe sine-functions that decay exponentially with
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Figure 41: Shape of elastically bent plates. a Continuous plate loaded only at x = 0: the
left margin of the diagram (eq. 95). Only half of the plate is shown. b Broken plate, also
loaded only at x = 0 (eq. 97). The curves are labeled with the flexural rigidity of the
plates in Nm.
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distance. A comparison of the curves shown on Fig. 41b with bathymetric measurements
shows that most subduction zones are steeper near the trench than what is described
by the curves at the left margin of Fig. 41b. It is interpreted that this indicates that
subducted plates are not only loaded by the upper plate but that convection in the mantle
wedge and other forces exert a additional torques on subducting plates.

8.1.5 Applications to the Continental Lithosphere

Continental lithosphere deforms internally much easier than oceanic lithosphere by perva-
sive ductile mechanisms. Thus, elastic features are often not so clearly exposed and loads
of mountain ranges and the like are distributed over large parts of the plates. Neverthe-
less, it should be said that the load of long mountain chains on homogeneous continental
plates is analogous to the problem of long island chains on oceanic lithosphere. Thus,
eq. 95 can – in principle – also be used to describe foreland basins, but care must be taken
by accounting for sedimentary fill of foreland basins, compensating crustal roots etc (s.
Turcotte and Schubert 1982). For example, ρw must be replaced by ρc in the formulation
of the flexural parameter (s. eq. 91). The topography of passive continental margins is
probably the example in the continental lithosphere that is most obviously described by
elastic flexure (Fig. 42).
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Figure 42: Elastic flexure at passive continental margins. The map shows the Great
Escarpment of southern Africa. The model at right is a cross section through an idealized
passive margin showing surface elevation H as a function of distance from the continental
shelf L at four different time steps.
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9 Unit: Deformation Mechanisms

For a mechanical description of deformation we need a mathematical rule that relates
stress (or force) to strain (or strain rate). Such a relationship is called a flow law, defor-
mation law or deformation mechanism. In order to understand these fully, it is mandatory
to understand the basic principles of the stress tensor. That is, the meaning (and the
differences) of terms like normal stress, shear stress, deviatoric stress, pressure, differen-
tial stress or mean stress. These definitions are repeated in Unit 13. If you do not know
what the differences between these terms are it is recommended that you read up on them
before proceeding.

On a microscopic scale, structural geologists discriminate between a large number of
deformation laws. However, on geological time scales and lithospheric length scales, most
geologists use only one of five terms to describe deformation mechanisms:

– brittle deformation

– plastic deformation

– ductile deformation

– elastic deformation

– viscous deformation.

These five terms have very different meanings and some of them are very rigorously defined
and others are not. We will deal with these five terms at length over the next sections
(s. also: Weijermars 1997; Twiss and Moores 1992; Jaeger and Cook 1979). Here we
summarize some of the most important information on these five terms and how they
relate stress to strain in general terms.

• Brittle deformation is no really a deformation mechanism at all. We will see below
that the laws of brittle deformation only describe a stress state and not a relationship
between stress and strain. The deformation law usually used to describe rocks in a brittle
fashion is plastic deformation.

• Plastic deformation law states that a constant stress is required to deform the rock.
Irregardless how much or how fast we deform, the required force is all the same. Deforming
sand is a good example.

• Ductile deformation is a wonderful term that has no specified meaning other than
that we want to say that the deformation is not elastic and not brittle. It is therefore an
extremely useful term if you are a field geologist and do not want to commit yourself to
any of the well-defined terms like “viscous”, “plastic” or “dislocation creep” - all of which
have very rigorously defined meanings.

• Elastic deformation is the law that states that the strain of a rock is proportional
to the applied total stress. As such, it is the only deformation mechanism which is not
permanent: As soon as the stress is released, the strain is gone as well.

• Viscous deformation is the law that is most commonly used to describe ductile defor-
mation on the crustal scale. Viscous means that the strain rate of a rock is proportional
to the applied deviatoric stress.

We all have every day encounters with elastic and viscous deformation mechanisms,
namely with rubber bands (elastic) and mixing cake dough (viscous). When stretching
a rubber band, the amount of stretch depends on how hard we pull. The more pull, the
more stretch. The applied stress and the resulting strain are proportional. On the other
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hand it does not matter at all whether we pull fast or slow. The stretch is always the same
for the same applied force, independent on the speed (strain rate) with which we do the
experiment. With mixing dough its exactly opposite: It does not matter at all whether
we mix it only a bit or very thoroughly (little or much strain in the dough), the needed
force is always the same. However, how much force we need depends very strongly on the
mixing rate. If we mix it rapidly, we need much more force than if we mix slowly.

9.0.6 Elastic Deformation

Elastic deformation is characterized by a proportionality between stress and strain. Both
these parameters are described by tensors which each include 6 independent values. How-
ever, if this proportionality is ideally linear, and we only consider uniaxial (one-dimensional)
loading then this relationship is called Hooke’s law and may be simply written as:

σxx = Eǫxx (98)

where the subscripts emphasize that this equation is meant to be one dimensional (and not
a full tensor equation). When the deformation is uni-axial, then ǫ is the (dimensionless)
longitudinal normal strain and is defined as the change in length during deformation
relative to the original length. The proportionality constant E is called the Young’s

modulus and has the units of stress (Nm−2). For rocks, the Young’s modulus is of the
order of 1010 to 1011 Pa. Young’s modulus is a kind of a summary of the Lame elastic
constants which are the elastic coefficients that occur when eq. 98 is written as a full tensor
equation.

If more than one of the three principal stresses is larger than zero, then it is also impor-
tant to consider that rocks are compressible. This is described by the Poisson constant ν.
For the largest principal stress we can write:

σ1 = ǫ1E + νσ2 + νσ3 (99)

or, if strain is written as a function of stress:

ǫ1 =
1

E
σ1 −

ν

E
σ2 −

ν

E
σ3 . (100)

For the other two spatial directions equivalent equations may be formulated. The Poisson
constant is given by the ratio of two stretches, namely the infinitesimal strain normal to
the applied stress and the stretch in direction of the applied stress.

Figure 43: Stretch of a cube as the con-
sequence of compression in the vertical di-
rection. The Poisson constant is defined as
ν = −e3/e1. e2

e1

e3
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During compressive deformation, a rock will shorten in the direction of the applied stress.
Thus, the incremental stretch e1 in Fig. 43 is negative. If the rock is isotropic, then this
shortening is distributed evenly between expansion in the other two spatial directions.
Thus, ν = +0.5 for incompressible materials. For example, rubber is almost incompressible
and has a Poisson constant of almost ν = +0.5. In contrast, the Poisson constant of rocks
is of the order of 0.1–0.3. We can see that rocks are quite compressible in the elastic
regime. However, the total strains of rocks in the elastic regime are quite small, because
the Young’s modulus of rocks is very large. Thus it is no obvious to us that rocks are
actually quite compressible.

9.0.7 Brittle Fracture

When the stresses applied to rocks cannot be compensated elastically, permanent deforma-
tion will occur. This may occur by ductile or brittle processes. Among brittle processes,
two different modes of brittle deformation may be discerned: rocks deform either by cre-
ating new cracks, or by friction along existing fractures. In both cases the friction along
the failure planes plays a critical role. Brittle failure is commonly described with the
Mohr-Coulomb-criterion. However, it should be said here that – strictly speaking – the
Mohr-Coulomb-criterion describes only a state of stress, namely the critical state at which
failure occurs. It does not place stress and strain in a relationship to each other and is
therefore not a constitutive relationship or flow law.

• Mohr-Coulomb-criterion Coulomb (1773) was the first to recognize that the brittle
strength of materials is largely a linear function of the applied normal stress σn and that it
depends only to the second order on a material constant called cohesion σ0. At geological
stresses cohesion is largely negligible. According to the Coulomb criterion, failure occurs
when the shear stress on a given plane reaches a critical value σc

s that is a function of the
normal stress acting on that plane σn, as:

σc
s = σ0 + µσn . (101)

The coefficient µ that relates shear stress and normal stress on a failure plane is called
the internal coefficient of friction. This coefficient is dimensionless. In the literature, the
critical failure stress is often abbreviated with τ . However, it is probably clearer if we
reserve τ exclusively for deviatoric stresses and we therefore choose a different notation in
this edition: We use the subscript s for all shear stresses (for both stress: σs and deviatoric
shear stress: τs) and apply additional superscripts if necessary. According to the Coulomb
criterion (eq. 101) brittle deformation is a nearly linear function of total stress. It is
independent of temperature or strain rate ǫ̇ and almost independent of the material as the
cohesion is almost negligible and the internal coefficients of friction are very similar for
most rocks (Byerlee’s law).

Mohr (1900) then discovered that the failure criterion of Coulomb may be elegantly
portrayed graphically. His graphical analysis is called the Mohr diagram. In the Mohr
diagram shear stresses are plotted against normal stresses and the stress state in a rock
is plotted as a circle (Fig. 44. From this figure we can see that σs is the largest on planes
that lie at an angle of 45◦ to the principal stress direction (i.e. 2θ = 90◦ and sin(2θ) = 1):

σmax
s =

σ1 − σ3

2
. (102)
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s

s

s

s

Figure 44: The relationship between normal stress (horizontal axis) and shear stress (ver-
tical axis) in the Mohr circle. The normal stresses are compressive (positive) to the right
of the origin and tensional (negative) to the left. Eq. 101 describes the tangent to the
Mohr circles drawn around centers at (σ1 + σ3)/2 with the radius (σ1 − σ3)/2. In the
ductile regime shear stresses do not increase linearly with normal stresses anymore. How-
ever, for many rocks the curve is even in the brittle regime not completely linear, but
slightly concave against the normal stress axis. For failure planes in a rock it is true that:
σc
s = sin2θ(σ1 − σ3)/2 and σn = (σ1 + σ3)/2− cos(2θ)(σ1 − σ3)/2.

Thus, the maximum shear stress a rock can support is half as large as the applied differ-
ential stress. However, it is important to note that the largest shear stress is not where
failure occurs. From Fig. 44 we can see that the normal stress at σmax

s is just a little bit
larger (it is: σn = −(σ1 + σ3)/2 than the normal stress at the critical failure stress σc

s (at
point A, for which the normal stress is explained in Figure caption Fig. 44.

The slope of the tangent to the Mohr circles in Fig. 44 is given by the internal angle of

friction. This angle of friction φ and coefficient of friction µ are related by:

tanφ = µ . (103)

For most rocks this angle is about 30–40◦, which is equivalent to an internal coefficient of
friction between roughly 0.6 and 0.85. This relationship is called Byerlee’s law as he was
the first to measure µ on a crustal scale and derived φ from µ.

• Byerlee’s and Amonton’s laws If preexisting cracks occur in a rock then there
is no cohesion. To be more precise: the remaining cohesion is negligible compared to
the cohesion of an intact rock. The shear stresses needed to deform a rock only need to
overcome the coefficient of friction and the normal stresses applied to the rock. Eq. 101
simplifies to:

σc
s = µσn . (104)

This equation is usually called Amonton’s law. Byerlee (1968; 1970) showed empirically
that, at pressures below 200 MPa, (roughly less than 8 km) the crust may be characterized
by an internal coefficient of friction around 0.85:

σc
s = 0.85σn . (105)

However, depending on rocks deforming brittle in compression, extension, or under a strike
slip regime, the best coefficient of fricition may change (Fig. 45). At larger depths, but
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Figure 45: Brittle failure as a
function of depth and normal
stress or “lithostatic
pressure”.

above the brittle ductile transition brittle failure in the crust appears to be best described
by:

σc
s = 60MPa + 0.6σn . (106)

These empirical relationships are called Byerlee’s laws (Fig. 45). Because of the fact that
µ ≈ 0.85, most faults occur at 30 degrees angle to the maximum principle stress. Byerlee’s
laws state that rocks at 5 km depth will fail at roughly 110 MPa, in 10 km depth at
roughly 230 MPa and in 15 km depth at about 300 MPa.

9.0.8 Viscous Deformation

On the scale of a thin section, rocks behave not viscously but according to a large range
of deformation mechanisms (e.g. grain boundary migration, diffusion creep and many
others). The dependence of deformation mechanism on the physical conditions may be
portrayed in deformation mechanism maps (Frost and Ashby 1982). In such maps param-
eters like temperature, grain size, stress and viscosity are plotted against each other and
the diagrams a divided into different fields where different mechanisms apply. However,
on a larger scale, it is useful to average different deformation mechanisms and assume
that rocks behave like viscous fluids. Viscous deformation of ideal fluids is described by
a proportionality between deviatoric stress and strain rate. If we make a simple shear
experiment in which we compare the scalar quantities of the shear strain rate γ̇ and the
shear force (per area) we require to shear it τs, then we can write:

τs = ηγ̇ . (107)

If we use the full deviatoric stress tensor τ and the full strain rate tensor ǫ̇, then this is
given by:

τ = 2ηǫ̇ . (108)

where the factor 2 arises from the definition of strain rate (see Unit 13). Both equations
are used in the literature (Ranalli 1987). In both the proportionality constant η is called
the dynamic viscosity. There is also a parameter called the kinematic viscosity which is
the ratio of dynamic viscosity and density and has the units of diffusivity, namely: m2 s−1.
The dynamic viscosity has the units of Pascal times second (Pa s) or kgm−1 s−1. For air
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it is roughly 10−5 Pa s, the viscosity of water is roughly 10−3 Pa s, the viscosity of ice
roughly 1010 Pa s, of salt 1017 Pa s and of granite it is roughly 1020 Pa s. If η is constant
with respect to strain rate then eq. 108 is linear. A fluid that behaves according to such a
linear relationship is called a Newtonian fluid. Eq. 108 states that the larger the deviatoric
stress that is applied, the faster the rock will deform. Note that, in the orientation of the
maximum shear strain rate, the stress in eq. 108 will be τmax, which is equivalent to half
of the differential stress σd/2 = (σ1−σ3)/2, (s. eq. 102). There are two reasons why rocks
typically don’t deform according to the simple form of eq. 107 with a constant viscosity:

• 1. The Arrhenius relationship Viscosity is extremely strongly temperature depen-
dent. This temperature dependence is described by the Arrhenius relationship:

η = A0e
Q/RT . (109)

In this relationship the constants A0 and Q are material-specific constants called the pre

exponent constant and the activation energy (in Jmol−1), respectively. The parameter R
is the universal gas constant and T is the absolute temperature. If we try to read eq. 109
we can see that it states that the viscosity of any material will trend towards infinity
at absolute zero and will decrease exponentially from there to approach the value A0

asymptotically at high temperatures. (Do not forget to always use absolute temperature
when performing calculations with eq. 109).

• 2. Non linearity Rocks rarely deform as a Newtonian fluid (i. e. there is rarely a
linear relationship between the applied deviatoric stress and strain rate). In fact, many
rocks deform roughly 8 times as rapid if the applied stress is doubled. More generally, this
may be written in terms of a power law relationship:

τns = Aeff γ̇ . (110)

There, the exponent n is called the power law exponent. It is a material constant and is
between 2 and 4 for many rock types. The parameter Aeff is a material constant. It is
analogous to η in eq. 108, but does not have the units of viscosity and we therefore use
a different symbol. Aeff has the units Pan s. However, in analogy to a Newtonian fluid,
it is possible to derive an effective viscosity from eq. 110 which is given by the ratio of
deviatoric stress and strain rate. This is:

ηeff =
τs
γ̇

= A
1/n
eff × γ̇(1/n)−1 . (111)

• General viscous flow law for the lithosphere If we want to apply a non-linear
viscous relationship like eq. 110 to rocks, it is useful to couple it with the Arrhenius
relationship. However, because of the parameter Aeff does not really have the units of
viscosity, and because experiments are typically not performed as shear experiments (where
γ̇ is measured), viscous flow laws are usually formulated somewhat differently. Typically,
they are formulated as a relationship between differential stress (σ1−σ3) and longitudinal
strain rate ǫ̇l, as it is measured in uniaxial shortening experiments. Such an empirical
relationship is called Dorn’s law and is typically written as:

(σ1 − σ3) =

(

ǫ̇l
A

)(1/n)

e(
Q

nRT ) or : ǫ̇l = σn
dAe

− Q

RT , (112)
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Figure 46: Differential stress (in MPa) during viscous deformation as a function of a range
of parameters as calculated with eq. 112. A power law exponent of n = 3 was assumed.
a Differential stress as a function of temperature and strain rate for the material constants
of quartz. b Differential stress as a function of activation energy Q (in Jmol−1) and pre
exponential constant A (in MPa−3 s−1). Continuous lines are for 500 ◦C, dashed lines are
for 1 000 ◦C. The assumed strain rate is ǫ̇ = 10−13 s−1. The rheological data for quartz
and olivine from sect. 10.1.1 are plotted.

(e.g. Sonder and England 1989 or Houseman and England 1986). The three material
constants A, Q and n are constrained by series of experiments performed at constant
strain rate and temperature (e.g. Gleason and Tullis 1995). For exponents larger than 1,
Dorn’s law is also called simply power law. Note that the constant A has (in contrast
to Aeff), the units of Pa−n s−1 and incorporates the factor 2 we encountered in eq. 108.
Also note again that – if you want to use eq. 112 to estimate the lithospheric strength or
non lithostatic contributions to pressure – only half of the differential stress contributes
to pressure.

For mechanical models in which temperature is not considered explicitly, it is useful to
summarize the temperature dependent terms of eq. 112. Fig. 46a shows the differential
stress as a function of temperature and strain rate for the material constants of quartz.
Fig. 46b shows differential stress as a function of activation energy and pre exponent
constant at fixed temperatures and strain rates.

Dorn’s law is an empirical deformation law and in some cases it is necessary to modify it
empirically. One example where this is necessary is the deformational behavior of olivine.
Fig. 46b shows that olivine deforms at 500 ◦C (which may be a realistic assumption for
the Moho-temperature) only at unrealistically high stresses around 107 MPa if it were
described with eq. 112. Thus, Goetze (1978) and Goetze and Evans (1979) suggested that
a better description of the behavior of olivine above 200 MPa is given by the relationship:

(σ1 − σ3) = σD

(

1−
√

RT

QD
ln

(

˙ǫD
ǫ̇l

)

)

. (113)

There, QD is again an activation energy, σD a critical stress that must be exceeded and
˙ǫD is the critical strain rate (s. Table 5). Comparing eq. 113 with eq. 112 shows that this
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Table 4: Dependence of brittle and viscous deformation on some physical parameters.

dependent on brittle viscous

total pressure (depth) yes (linear) no
material no yes (≈ power of 3)
strain rate no yes
temperature no yes (exponential)

law is by far not as temperature dependent as the power law. Combinations of eqs. 112,
113 and Byerlee’s laws form the basics of many simple quantitative models describing the
rheology of the lithosphere as a whole (Brace and Kohlstedt 1980).

Eq. 112 shows that the stresses during viscous deformation are strongly dependent
on temperature, strain rate and material constants, but are independent of the confining
pressure. Thus, ductile deformation is subject to completely different laws than brittle
deformation (Table 4).
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10 Unit: Rheology and Force Balance of the Litho-
sphere

In the previous section we showed that the deformation of the lithoshere is predominantly
controlled by brittle and viscous deformation, and that these two mechanisms depend on
very different physical parameters (Table 4). In this unit we assemble this information to
a rheological profile through the lithosphere and interpret such profiles.

10.1 Rheology of the Continental Lithosphere

In the late seventies of last century Brace, Goetze and others summarized much of the
information from the previous sections to formulate a simple rheological model for the
lithosphere. This rheological model is sketched in Fig. 47 and the following figures and
will be the basis for our discussion. Note that in these strength profiles (e.g. Figs. 47, 48
and 49) differential stress rather than deviatoric stress is usually plotted on the horizontal
axis, because σd is a single scalar value that may be used to characterize the stress state.
It is important to note throughout this chapter that σd/2 corresponds to the maximum
deviatoric stress (s. discussion around eqs. 102 and 108 and Unit 13).

viscous

viscous

Figure 47: Schematic illustration of a Brace-Goetze lithosphere. The shaded area in c and d

yield the vertically integrated strength. The units of this integrated strength are Nm−1.
This integrated strength may be interpreted as the force per meter length of orogen ap-
plied to the orogen in direction normal to the orogen (assuming the orogen is everywhere
deforming).

The strength profiles in Fig. 47 consist of two different types of curves. The straight
lines are for brittle fracture. They show increasing rock strength with increasing depth
as the normal stresses in the crust increase with depth as shown in eq. 101 (Fig. 47b,
s. sect. 9.0.7). The curved lines describe viscous deformation. The strength they describe
decreases exponentially downwards, because temperature increases with depth roughly
linearly (s. sect. 9.0.8) and viscosity for a given mineral decreases exponentially with
temperature. Each curve is for a given strain rate that is assumed to be constant over the
entire lithosphere. A higher strain rate will yield a curve that has a higher strength at a
given depth. Fig. 47b shows that, for a given strain rate, two different failure strengths may
be associated with each depth. A rock at a given depth will always deform according to the
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deformation mechanism that requires less stress. Using this logic, we can draw strength
profiles like those illustrated in Fig. 47c and 47d. The depth at which brittle strength
and viscous strength have the same magnitude is called the brittle-ductile transition. Note
that the depth of this transition is strain rate dependent in this model.

In first approximation it is fair to assume that a rock will begin to deform when the
rheologically weakest phase fails. As quartz is one of the softer minerals and most crustal
rocks contain quartz, the ductile deformation of the crust may well be described with the
rheological data for quartz. Rocks in the mantle part of the lithosphere are quartz absent
and dominated by olivine. Therefore, Fig. 47 shows two pairs of curves for power law
creep; one pair for the creep stresses of quartz at low and high strain rates, the other for
the creep behavior of olivine at low and high stain rates. Together, all these curves result
in a strength profile for the continental lithosphere that contains two strength maxima,
one at mid crustal levels, the other in the uppermost portions of the mantle part of
the lithosphere. This extremely simple model for the rheological stratification of the
lithosphere is called a Brace-Goetze lithosphere (after a suggestion by Molnar 1992).

10.1.1 Qualitative Features of the Brace-Goetze Lithosphere

The model of the Brace-Goetze lithosphere has a large number of features that are in
phenomenal correspondence with observations in nature. Some of these are discussed here
(see also: Jackson 2002).

• Brittle failure in the mantle A comparison of Figs. 47c and d shows an interesting
qualitative difference between the two strength profiles. At low strain rates the entire
lithosphere below the brittle ductile transition deforms viscously. However, at large strain
rates, the viscous strength of the upper mantle is larger than its brittle strength and the
uppermost mantle will fracture. Of course, the occurrence of brittle fracture in the upper
mantle depends on a large number of other factors as well. However, we want to note
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Figure 48: Schematic diagram showing the changes in mechanical strength of a Brace-
Goetze lithosphere when changing the deformation regime qualitatively, i.e. from com-
pression to extension. a The change from compression to extension decreases the brittle
failure strength, while the viscous strength remains unaffected by this change, if the abso-
lute value of the strain rate remains constant. Potentially, this may be reflected in brittle
failure of the upper mantle (b and c).
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that the brittle strength of the upper mantle is comparable to its viscous strength at
geologically realistic strain rates. Should it be true that the upper most mantle deforms
brittle under some circumstances, then this process might have important consequences
for the accumulation of mafic material (underplating) at the Moho (Huppert and Sparks
1988). The transition from viscous flow to brittle failure in the upper most mantle may
not only occur due to a change in strain rate (increase of viscous strength), but may also
occur due to a decrease of the brittle strength. This may occur if there is a transition from
compression to extension.

• Changes in the rheological stratification Changes in the strain rate of an orogen
can also change the rheological stratification of the lithosphere. This is illustrated in Fig. 49
using a simple model lithosphere made up of three lithological layers. The figure shows
that a change in the strain rate may change the rheological layering. At low strain rates
there are three strength maxima, while at high strain rate there are only two (Fig. 49b,c).
Such weak points may be the nucleus for the formation of a tectonic nappe boundary.
Thus, it is possible that the thickness of nappes in a lithologically stratified crust is a
function of the strain rate (Kuznir and Park 1986).

• Changes in the geotherm During viscous deformation it is not only changes in the
strain rate that can change the strength of the lithosphere. Changing the geotherm may
have the same influence. Other mechanisms that can cause changes in the strength of the
lithosphere are, for example, strain hardening, or metamorphism.

• Strength change due to metamorphism During metamorphism and deformation,
both mineralogy and grain size change. It is therefore conceivable that a rock has a higher
shear strength after metamorphism than before. For example, a garnet mica schist has a
larger shear strength than its precursor: a clay. This is an interesting aspect which may
be crucial in the consideration of postorogenic extension of mountain belts. In general
it is thought that the stresses required for the late extension of an orogen are smaller
than those required for its shortening. This is based on the fact that brittle deformation
requires smaller stresses in tension than in compression. However, this is contrasted by
the fact that the crust may have increased its strength by metamorphism.
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Figure 49: Schematic diagram showing how changes of the deformation rate can cause
changes in the rheological stratification of the lithosphere.
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• Quantitative description of a Brace-Goetze lithosphere In order to describe
the Brace-Goetze lithosphere quantitatively we require quantitative information on 1. the
depth dependence of temperature, i.e. a description of a geotherm; 2. the material con-
stants (both 1 and 2 we need in order to calculate viscous stresses); 3. we need density
and thickness of the crust and mantle part of the lithosphere in order to calculate vertical
stresses and therefore the brittle strength. Table 5 lists typical numerical values for these
parameters (Brace and Kohlstedt 1980). For the thermal structure of the lithosphere we
will assume in the following that the radiogenic heat production decreases exponentially
with depth according to eq. 18 with the characteristic drop off depth hr = 10 km. We also
assume that the thermal conductivity is k=2 J s−1 m−1 K−1, and that the temperature
at the base of the lithosphere is Tl = 1280 ◦C. Assumption on thickness and density are
also listed in Table 6.

Table 5: Rheological parameters of the continental lithosphere relevant for its viscous
behavior. These data are largely after Sonder and England (1986).

parameter value/unit definition

power law (eq. 112)

Aq 5 · 10−6 MPa−3 s−1 pre exponent constant for quartz
Qq 1.9 · 105 Jmol−1 activation energy for quartz
nq 3 power law exponent for quartz
Ao 7 · 104 MPa−3 s−1 pre exponent constant for olivine
Qo 5.2 · 105 Jmol−1 activation energy for olivine creep
no 3 power law exponent for olivine

Dorn’s law (eq. 113)

QD 5.4 · 105 Jmol−1 activation energy for olivine creep
ǫ̇D 5.7 · 1011 s−1 strain rate
σD 8 500 MPa critical stress

We also make the assumption that the viscous behavior of olivine is described by eq. 112
below stresses of 200 MPa and by eq. 113 for stresses above 200 MPa. Brittle failure is
described with Byerlee’s law. That is, below 500 MPa brittle failure is assumed to occur
without cohesion and an internal coefficient of friction of 0.8 and above 500 MPa the
cohesion is 60 MPa and the internal coefficient of friction is 0.6. Some strength profiles
calculated with these assumptions are dawn in Fig. 50.

10.1.2 Strength of the Lithosphere

When considering the distribution of stresses in the continental lithosphere, we have so
far always only considered the stresses at a given depth. However, if we want to consider
the deformation of entire continental plates, we need to know the mean stresses averaged
over the entire lithosphere, or we need to know the total force that it needed to deform the
entire lithosphere from top to base. Within the model of a Brace-Goetze lithosphere, this
force is given by the vertically integrated stresses. This integrated strength is abbreviated
with Fl and corresponds to the shaded region in Figs. 47, 48 and 49). If we make the thin
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Table 6: Rheological parameters of relevance for the brittle deformation of a Brace-Goetze
lithosphere.

parameter value/unit definition

µ(<500MPa) 0.8 coefficient of friction in the crust
µ(>500MPa) 0.6 coefficient of friction in the mantle
σ0(<500MPa) 0 cohesion of the crust
σ0(>500MPa) 60 MPa cohesion of the mantle
λ 0.4 and 0.8 pore fluid/lithostatic pressure ratio
zc 35 km thickness of the crust
zl 125 km thickness of the lithosphere
ρc 2 750 kgm−3 density of the crust
ρm 3 300 kgm−3 density of the mantle lithosphere
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Figure 50: Strength profiles for the continental lithosphere as calculated with the model
for a Brace-Goetze lithosphere and the data from Table 5 and 6). a, b, c and d are
profiles for four different geologically relevant strain rates. The two diagrams show the
strength profiles for two different Moho-temperatures that result from assumptions for the
radiogenic surface heat production of S0 = 5 · 10−6 Wm−3 and S0 = 7 · 10−6 Wm−3.
In each diagram two linear curves for brittle failure for λ = 0.4 and λ = 0.8 are plotted.
The stress curve with the higher stresses is for the lower value of λ. It was assumed that
λc = λl. The vertically integrated stresses Fl are given in 1012 Nm−1.

sheet approximation, then the integrated strength of the lithosphere may be calculated as:

Fl =

∫ zl

0

(σ1 − σ3) dz . (114)

It has the units of force per meter or Pam = Nm−1. Fl may be interpreted as the
force acting in the direction normal to the orogen per meter length of orogen (i.e. in
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Figure 51: Strength profile
through the oceanic
lithosphere at ages of 10, 30
and 100 my. For each of these
ages, stresses were calculated
for three strain rates of
ǫ̇ = 10−16, 10−14 and
10−12 s−1. For each age, the
curve for the highest strain
rate has the largest strength.
The temperature profiles
needed to calculate the
stresses were calculated using
eq. 34.
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direction parallel to the orogen), that is required to deform the orogen with a given stain
rate (Fig. 47, 48, 49). In the literature, the terms “strength” is often used very loosely.
Strength (in Pa), integrated strength (in Nm−1), sometimes stress and occasionally even
force are all often confused. We want to remember that strength has the units of stress (it
is the stress that leads to brittle failure or viscous flow) and that integrated strength is a
force per meter (which is equal to stress × meter). In the viscous regime strength is only
defined for a given strain rate. This should be clear from eq. 112, where it is shown that
the viscous stresses (strength) are strongly dependent on strain rate.

10.2 Rheology of the Oceanic Lithosphere

The fundamental assumptions which we have made for the calculation of stresses and
strength profiles for the continental lithosphere are also valid for the oceanic lithosphere.
However, there are two important differences: 1. In contrast to the continental lithosphere,
oceanic geotherms are time dependent and there is no radiogenic heat production in the
oceanic lithosphere. As a consequence, different relationships must be used to calculate
the temperature profile with depth and ultimately the rheology. 2. There is practically
no quartz bearing crust in the oceanic lithosphere and the rheology of oceanic lithosphere
is therefore largely governed by the rheology of olivine. As a consequence, there is only
one maximum in the strength profile (Fig. 51). On the other hand, the strength profiles
of oceanic lithosphere are highly dependent on its age (sect. 3.2). The depth dependent
temperature profile of oceanic lithosphere may be calculated with eq. 34. A strength
profile for the oceanic lithosphere may then be calculated (Fig. 51).

10.2.1 Strength of the Oceanic Lithosphere

Eq. 114 may be used to calculate the integrated strength of the oceanic lithosphere just
like we used it above to calculate the integrated strength for the continental lithosphere.
In fact, it is possible to calculate the integrated strength of the oceanic lithosphere with
much higher accuracy than of the continental lithosphere, because oceanic geotherms are
much better known than continental geotherms. A comparison of Fig. 50 with Fig. 51
shows that only very young oceanic plates are likely to have a smaller integrated strength
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than continental lithosphere. This result corresponds to our observations: We know that
most intra plate seismicity occurs in the continents and not in the oceans. There is
practically no deformation inside the oceanic plates of Earth. An oceanic plate acts -
because of its high integrated strength - like a passive transmitter of stresses from the mid
oceanic ridges to the continents.

10.2.2 Force Balances in Orogens

Proper force balance equations are briefly discussed in Unit 13. Here, we want to introduce
a more intuitive way to formulate a force balance for orgens that we can use without too
much algebra. For this we divide (very loosely and not very precisely) the forces that keep
orogens in mechanical equilibrium into three groups:

1. Driving forces: Driving forces are forces applied from the outside to an orogen, for
example ridge push or slab pull. In the following we abbreviate these forces with Fd.
Some of these forces were already discussed in sect. 11.1.1.

2. Internal forces: These are the forces internal to the lithosphere which resist the driving
forces and are limited by the inherent strength of the rocks in the lithosphere. These
are the forces discussed in detail in sect. 10.1. It is the vertically integrated strength
of the lithosphere, which has the units of force/meter and was explained on p. 76. We
represent this in the following with Fl.

3. Potential energy: Forces resulting from the potential energy difference of an orogen
relative to its surroundings are also called gravitational stresses or: horizontal buoyancy
forces. We denote those in the following with Fb.

This division is not completely sound, as many of the plate tectonic driving forces them-
selves are also caused by potential energy differences and many of the other forces are also
coupled. However, it helps us to understand the balance of forces in orogens which we can
write as:

Fl = Fd − Fb . (115)

Basically this equation states that the strength of the lithosphere balances the effective
force applied to the orogen, with the “effective force” being the difference between the
external driving force causing convergence and the buoyancy force causing extension. We
will discuss this equation in some detail in a few pages. However, first we want to discuss
the process of building up potential energy in an orogen in some more detail. Note also
that all orogenic forces are usually not given in the units of force (N), but that they are
discussed in terms of force per meter (Nm−1) and that the unit of “force per meter” is
equivalent to the units of “potential energy per area” or the units of “stress × distance”.

• Evolution of orogens in the equilibrium of forces The force balance we have
discussed in the last paragraphs may be summarized in the following equation:

Feff = Fd − Fb . (116)

which we already introduced in eq. 115. There, Fd is the tectonic driving force per meter
length of orogen, Fb is the gravitational stress times the thickness of the lithosphere. Fb

is also called horizontal buoyancy force, or: extensional force or: potential energy per area.
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Figure 52: Schematic
illustration of the evolution of
a collisional orogen subject to
the force balance of eq. 117.
Surface elevation and crustal
thickness converge to a steady
state when the magnitude of
the horizontal buoyancy force
approaches the tectonic
driving force
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The difference between the driving force and the horizontal buoyancy force is the effective
driving force applied to a continent Feff . Equation 116 is often referred to as the “orogenic
force balance”. Note that – although this equation is called a “force balance” – it really

balances parameters that have the units of force per meter or stress × meter. Eq. 116 is
often also written as:

Feff = Fd − Fb = Fl . (117)

There, Fl is the vertically integrated strength of the lithosphere in Nm−1 and corresponds
to the area under the failure envelope discussed in Figs. 47, 48 and several others. Note
that Fl can only equal the left hand side of the equation if the orogen is deforming (i.e.
at the point of failure). When Feff < Fl, there is no deformation. However, we assume
that active orogens are always on the point of failure so that Feff = Fl (sect. 10.1.2,
eq. 114). The bulk of the lithosphere is dominated by viscous deformation mechanisms
where deviatoric stress and strain rate are proportional. Thus, an orogen will always
deform with a strain rate that is just large enough so that the vertically integrated flow
stresses balance exactly the effective driving force (per meter). If the strain rate would
be lower than this, the integrated strength of the lithosphere would be smaller than the
effective driving force (per meter) and the deformation rate would increase. Conversely,
if the strain rate would be larger than the effective driving force, then the strength would
be too large for any deformation to occur. Note also that, within eq. 117, the integrated
failure strength of the lithosphere is zero when the effective driving force is zero.

Because of the balance described by eq. 116 it is possible to solve this equation for
strain rate of an orogen, if a relationship is assumed that relates stress to strain rate (e.g.
a viscous flow law). Such an analysis has been done by a number of authors and provides
insights into the basic principles of the mechanical evolution of collisional orogens. If
the tectonic driving force is assumed to be constant, then such orogenic evolutions track
towards an equilibrium where Fb = Fd and Feff = Fl = 0 (Fig. 52). Thus, collisional
orogens are self limiting. As such, collisional orogens are fundamentally different from
extensional orogens, which are not necessarily self limiting.

• The mean strength of the lithosphere Differences in surface elevation of the
continental lithosphere can only be created if the lithosphere has a finite strength. That
is: if the horizontal and vertical principle stresses are of different magnitude (McKenzie
1972; Molnar and Lyon-Caen 1988). If the were no stress differences, then the surface
of a plate subjected to lateral forces from the outside would lift everywhere by the same
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amount; like water between two converging sides of an aquarium. There would be no
mountain ranges and the surface of the continents would look rather boring. Conversely,
it is possible to use the thickness and surface elevation of a mountain belt to estimate the
mean strength of the lithosphere (Molnar and Lyon-Caen 1989) (see Unit 11).

Consider a mountain range which collapses under its own weight and to which there is no
forces applied externally. then, there is no external driving force and We can reformulate
eq. 117 to:

Fb = −Fl . (118)

The left hand side of eq. 118 is the potential energy difference between mountains and
foreland per unit area and was evaluated in eq. 126 or, somewhat more precisely, with
eq. 128 (s. also Fig. 57). The right hand side of eq. 118 is the integrated strength of the
lithosphere (s. eq. 114). It is the product of the mean differential stress of the extending
mountain range and its thickness. Thus, the elevation contrast between mountain belts
and their foreland may directly be used to provide an upper bound on the mean strength
of the lithosphere.

According to the estimates of Molnar and Lyon-Caen (1988), the surface elevation
contrast between the Tibetan Plateau and the Indian foreland indicates a mean strength of
the Asian lithosphere of σd =69 MPa (see eq. 126). For the Altiplano in the Andes similar
estimates indicate a mean strength of σd =52 MPa. This mean strength is estimated
purely on the basis of topography differences and is therefore quite a sound estimate. If
we acknowledge that some parts of the lithosphere will be significantly “softer” than this
value (e. g. the uppermost and lowermost parts of the crust as shown in Fig. 47), then there
must be other parts of the lithosphere that are significantly “stronger” than this value to
maintain the mean value given by these estimates. These considerations provide a strong
argument for the existence of a significant shear strength of parts of the lithosphere.
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11 Unit: Plate Driving Forces: Potential Energy

Plate tectonic driving forces may be divided into two fundamental groups according to
the way they are transmitted:

– transmission by shear stresses,

– transmission by normal stresses.

Because plate tectonic driving forces act horizontally, shear stresses must be applied to
horizontal surfaces and normal stresses to vertical surfaces. If the transmission occurs by
shear stresses, this is often called basal traction. If the transmission occurs by normal
stresses, we speak of end loading or side forcing (Fig. 53).

Figure 53: Illustration of the two fundamental mechanisms for the transmission of plate
tectonic driving forces. a illustrates transmission by basal friction. In ii basal friction is
shown in a Eulerian reference frame (“conveyer belt” model). In iii basal friction is shown
in a Lagrangian reference frame (“bulldozer” model). b illustrates transmission by lateral
normal stresses (“side forcing”).

11.0.3 Transmission of Stresses by Shear- or Normal Stresses

One model for the explanation of plate motions is that the friction between the base of
the lithosphere and the convective motion in the asthenosphere is the principal driving
mechanism (Ziegler 1992; 1993). The most important argument for this model comes
from the reconstruction of past plate motions. These do not correspond very well with
the global geometry of mid oceanic ridges and subduction zones. Thus, it is thought that
these plate motions reflect the geometry of convection cells in the mantle instead. The
most important argument against this model is implicit in Fig. 47. This figure shows that
differential stresses at the base of the lithosphere are much too small to be able to transmit
forces from the mantle into the lithosphere. It is therefore hard to imagine that this softest
part of the lithosphere can transmit stresses large enough to build the mountain ranges of
our planet (s. mechanical definition of the lithosphere). The tractions at the base of the
lithosphere are not likely to be larger than 10−2 MPa (Richardson 1992).

The other - and by far more accepted - model for the explanation of plate motions is that
plate boundary forces drive plate tectonics by lateral normal stresses (e. g. Forsyth and
Uyenda 1975). These forces are predominantly caused by potential energy variations. Such
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Figure 54: Illustration showing how apparently small differences in the boundary condi-
tions can cause very different deformation geometries.

variations occur inside the continents and along the boundaries of oceanic lithosphere and
will be discussed on the following pages. Despite the two different models for the origin of
plate tectonic driving forces we should not forget that, ultimately, all plate tectonic forces
find their origin in the thermal energy of Earth.

11.0.4 Boundary Conditions of Deformation

In the last section we have discussed normal and shear stresses that cause the deformation
of plates. However, it is not clear that it is stresses that are the appropriate boundary
conditions for plate deformation. For example, the India-Asia collision keeps going at
constant convergence rate irregardless the stresses that arise as a consequence of the build
up of the Himalaya. Thus, this may be an example where velocities rather than stresses
form an appropriate boundary condition. We therefore discriminate between:

– Orogenic boundary conditions given by velocities,

– Orogenic boundary conditions given by stresses.

Both types of boundary conditions may have a normal and a tangential component.
Thus, for a two-dimensional mechanical model with the two spatial coordinates x and y,
we require a tangential and a normal boundary condition on each boundary. A total of
four variables must be defined by the boundary conditions (Fig. 54).

11.0.5 Potential Energy

Practically all important plate tectonic driving forces find their origin in differences of the
potential energy of different parts of the earth (Turcotte 1983). In this section we explain
what we understand with the term potential energy in a plate tectonic context. We will
return to this concept again in the sections 11.1, 11.2 and 10.2.2.

In sect. 7.1 we have shown that the vertical normal stress at a given depth in the crust
z is given by the product of density, gravitational acceleration and the height, or thickness
of the vertical rock column above it. This vertical normal stress is the vertically acting
force per area. It may be calculated by integrating ρg between 0 and z, as we did in eq. 65.
If the density over the thickness z remains constant, then this is simply ρgz. This term
has the units of Pa or kg s−2 m−1 or Jm−3. We can see that stress has the same units as
energy per volume.
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Figure 55: Density ρ and vertical normal stress σzz as a function of depth z. The value σzz

is the vertically integrated density, times acceleration. Thus, the curve in b corresponds
to the gray shaded region in a. The row of little unity cubes next to a illustrates how
the vertical stress increases with depth. The column of cubes next to b illustrates that
the horizontal force exerted by the column on its surroundings is given by the sum of all
vertical stresses. This corresponds to the gray shaded area in b.

This quantity can also be interpreted as the potential energy of a cubic meter of rock
at depth z. If we want to know the potential energy not of a single cubic meter, but
that of a whole body, for example that of a mountain range, then we need to integrate
this potential energy per cubic meter over the lateral and vertical extent of the range.
Fortunately, it is usually sufficient to know the potential energy per area, i.e. that of
a complete vertical column, but only for one square meter of area. Using this potential

energy per area we can compare different regions on the globe, for example two neighboring
lithospheric columns of different thickness and density distribution. In the following we
will represent the potential energy per area with Ep. In order to determine Ep at depth z
we simply need to sum up (i.e. integrate) the vertical stresses in the lithospheric column
of interest between the surface (which usually is z=0 in the reference frame we use) and
the depth of interest z:

Ep =

∫ z

0

σzzdz =

∫ z

0

∫ z

0

ρ(z)gdzdz . (119)

Very often the “depth of interest” is the isostatic compensation depth. If the density is
independent of depth, then eq. 119 may be simplified to give:

Ep =

∫ z

0

σzzdz =

∫ z

0

ρgzdz =
ρgz2

2
. (120)

This integral corresponds to the gray shaded region in Fig. 55b. We want to remember
that Ep has the units of energy per area and is, therefore, strictly speaking, no energy as
such.

11.0.6 Horizontal Forces Arising from Potential Energy Variations

In a static, non-deforming lithosphere the horizontal and vertical normal stresses have the
same magnitude (see Fig. 55). It is true that:

σzz = σxx = σyy . (121)

This is also stated in eq. 108, which says that there is no deviatoric stress if the strain
rate is zero. The sum of all vertical stresses integrated over the thickness of a plate is
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the potential energy of the plate per area. Since horizontal and vertical stresses are the
same, this potential energy per area is equivalent to the force exerted by the lithosphere
onto its surroundings, per meter length of orogen. If two neighboring vertical lithospheric
columns have the same potential energy per unit area, then they also exert equally large
horizontal forces onto each other and there is no “net force” between them. However,
if they have different potential energies per area, then this potential energy difference
between the two plates may be interpreted as the net force Fb that is exerted by one
column onto the other in the horizontal direction and per meter length of orogen. This
net force arising from potential energy differences is also called horizontal buoyancy force

(somewhat cumbersome) or gravitational stress and it is important to remember that it
has the units of force per meter length of orogen. This potential energy difference may be
written as (s. Fig. 56):

∆Ep = Fb =

∫ zK

0

∫ zK

0

ρA(z)gdzdz −
∫ zK

0

∫ zK

0

ρB(z)gdzdz . (122)

There, zK could be any depth, but for many purposes it is useful to assume that it is
the same isostatic compensation depth we used on p. 51. Below this depth there is no
density differences between the vertical columns A and B (s. eq. 64). ρA(z) is the density
of profile A as a function of depth z.

If density is a continuous function of depth, then eq. 122 may be usually integrated
without too much trouble. However, in the lithosphere, the density distribution has (a
the least) a discontinuity at the Moho so that it may be necessary to split the integral in
eq. 122, even for very simple assumptions on the density distribution in the lithosphere.

The importance of the density distribution in the lithosphere for the potential energy
may be illustrated nicely with an interesting example. Fig. 56 shows two columns in
isostatic equilibrium. The two columns have the same isostatically supported surface
elevation, because they are made up of sections of the same densities and thicknesses.
However, they have different potential energies because in column B the dense part lies
up high. Potential energy does not only depend on thickness and density, but also on the
distribution of density with depth. Thus, there is a net buoyancy force between the two
columns shown in Fig. 56. This net force is exerted by column B towards column A.

We can conclude that it is dangerous to infer lateral forces from topography on the sur-
face of earth (England and Molnar 1991). In fact, it is even possible, that topographically
lower regions exert a gravitational stress on topographically higher regions, averaged over
the thickness of the lithosphere (Stüwe and Barr 2000).

11.0.7 Force Balance Between Mountains and Foreland

In this section we estimate the forces exerted by a mountain range onto its foreland
(Fig. 57). For this, we will follow the logic of Molnar and Lyon-Caen (1988) and also use
their choice for the vertical axis of the cross section. We assume an origin at the Moho and
measure the vertical direction positively upwards as illustrated in Fig. 57b. This choice
for the vertical axis helps the intuitive understanding if the integration of eq. 122, as one
of the integration limits is always zero. However, note that the results are independent
of the chosen reference frame as we do not calculate absolute potential energies, but only
potential energy differences between two neighboring columns. Thus, as long as we choose
the same coordinate system for the two columns that are to be compared, it does not
matter which reference frame we pick.
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Figure 56: Schematic cartoon showing two columns in isostatic equilibrium (ρ1 < ρ2 < ρ3).
The surface of both columns has the same elevation above the liquid of density ρ2, because
both bodies consist of equally thick sections of the densities ρ1 and ρ3, i.e. they have the
same weight. However, column B has a much higher potential energy per unit area than
column A, because the distribution of density is different. In column B the high density
part of the section lies higher. As a consequence, B exerts a net force towards A.
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Figure 57: Cartoon contrasting the distribution of vertical stresses in mountain ranges
relative to their foreland. a The thickness of the crustal root is w, the surface elevation
relative to the reference lithosphere in the foreland H. In isostatic equilibrium it is true
that: Hρc = w(ρm − ρc) = w∆ρ. In b the vertical stresses are drawn for the mountain
range and the foreland. The dark shaded area between the two stress curves has the
units of stress × meters or force per meter length of orogen exerted by the range onto the
foreland. It corresponds to the potential energy difference between the mountain range
and the foreland.

We begin by calculating the potential energy per unit area of the foreland following the
logic of Molnar and Lyon-Caen (1988) and the geometry shown in Fig. 57. We can find
this by integrating eq. 119. For the undeformed lithosphere in the foreland the potential
energy above the Moho is simply:

Eforeland
p = ρcgz

2
c/2 . (123)

Correspondingly, the potential energy of the thickened crust relative to the Moho is:

Erange
p = ρcg(H + zc)

2/2 + ∆ρgw2/2 . (124)

where ∆ρ=(ρm−ρc) and the thicknesses H, Zc and w are as labeled on Fig. 57. The first
term in the equation above is simply the potential energy of the thickened crust above
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the chosen origin at the Moho of the undeformed lithosphere. the second term is in the
negative z direction, but the density contrast is also negative (as it acts as a buoyant force)
providing in total a positive contribution to the potential energy. The potential energy
difference per unit area is given by the difference of eq. 123 and eq. 124 (s. eq. 122). It is:

∆Ep = Fb = Erange
p − Eforeland

p

= ρcgH
2/2 + ρcgHzc + ∆ρgw2/2 . (125)

Eq. 125 may be simplified because we assume that both, mountain range and foreland are
in isostatic equilibrium. The isostasy condition states that: ∆ρw = Hρc. Using this we
can simplify eq. 125 to:

∆Ep = Fb = ρcgH (H/2 + zc + w/2) . (126)

The force Fb corresponds to the dark shaded region in Fig. 57b. It is the difference between
the vertically integrated vertical stresses σzz of two vertical columns in the mountain range
and in the foreland, respectively (Tapponier and Molnar 1976). For a 3 km high mountain
range with a 30 km root, eq. 126 gives a force Fb of the order of 3–4 ·1012 Nm−1. We will
see that this number is comparable with the forces applied to and exerted by mid ocean
ridges.

Despite its simplicity, eq. 125 may be used to draw some very fundamental conclusions.
For one, we can see that the third term is significantly larger than the first term. Thus,
the potential energy difference between two mountain ranges of the same elevation be-
comes larger if the compensating root is thicker. For example, a 100 km thick root of
a mountain range made up of low density mantle material contributes significantly more
to the potential energy of a range than a 60 km thick root of crustal material. We can
also see from eq. 125 that the potential energy of a mountain range grows with the square
of both the surface elevation and the thickness of its root. The work that must be done
to increase the surface elevation of a mountain range by one meter increases therefore as
the mountain range gets higher (Molnar and Tapponier 1978; s. sect. 10.2.2). This is the
reason why mountain ranges do not grow infinitely on this planet and have a limiting
elevation. As potential energy variations are some of the most important driving forces in
the lithosphere we will continue with more details in the following sections 11.1 and 11.2.

11.1 Forces in Oceanic Lithosphere

The forces exerted by oceanic lithosphere onto the continents around them are considered
to be the fundamental driving mechanism for plate tectonic motion (McKenzie 1969b).
There are two important driving forces in oceanic lithosphere: 1. the potential energy of
the mid-oceanic ridges and 2. the forces that occur in subduction zones.

11.1.1 Ridge Push

Mid-oceanic ridges have a high topography and a high potential energy relative to the
average oceanic lithosphere. This potential energy is one of the more important (and
certainly best known) plate tectonic driving forces. While strictly speaking the mid-
oceanic ridge applies a torque to the plate, we will neglect here the curvature of Earth and
continue using the term “ridge push”. It is important to understand that ridge push finds
its origin in the high potential energy of the ridge, rather than in the frictional stresses
between an outward welling mantle plume and the oceanic plate as drawn in Fig. 58a.
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The ridge push force per meter length of ridge (equivalent to the potential energy of the
ridge per unit area) may be calculated with eq. 122, using similar assumptions to those we
have made when designing a model to explain the water depth of the oceans (s. Fig. 36).
The density of oceanic lithosphere must be expressed in terms of temperature (eq. 70)
and temperature as a function of depth (eq. 34; s. Turcotte and Schubert 1982; Parsons
and Richter 1980). Then - using the half space cooling model - it may be shown that the
ridge push force is a function of the thermal profile through the oceanic lithosphere and
therefore of age. Without reiteration the derivation of the ridge push force here, we simply
state that it is given within this model by the equation:

Fb = gρmαTlκt

(

1 +

(

ρm
ρm − ρw

)

2αTl

π

)

≈ 1.19 · 10−3t . (127)

All parameters of this equation are explained in sect. 7.1. From eq. 127 we can see that
the ridge push force is a linear function of age of the oceanic lithosphere (Fig. 59). As such
it is different from water depth which - within this model is described by a square root
function of age (Fig. 37). The numerical value of the proportionality constant between age
and force in eq. 127 (1.19 · 10−3) is derived using the following constants: Tl =1200◦C;
ρm =3200 kgm−3; ρw =1000 kgm−3; α = 3 · 10−5 K−1 and κ=10−6 m2 s−1. Fig. 59
shows that ridge push is about an order of magnitude smaller than the integrated strength
of continents at normal orogenic strain rates. Thus, we may conclude that ridge push alone
is insufficient as the principal plate tectonic driving force.

• Asthenospheric flow at mid-oceanic ridges In the past, ridge push has been
interpreted to be related to frictional stresses of upwelling asthenosphere that “pushes”
the ridge apart as illustrated in Fig. 58a. However, several observations speak against
this model. For example, if upwelling material causes ridges, then it would be expected
that different ridges have different elevations above the abyssal planes - dependent on the
force exerted by the upwelling materials. In contrast, practically all mid ocean ridges lie
at a constant water depth. Today we know that there are only very few places where
mid-oceanic ridges coincide with diapirically upwelling mantle material. Rather, the as-
thenospheric flow at most mid-oceanic ridges is of the geometry shown in Fig. 58b. Among
other arguments, this was recognized by McKenzie and Bickle (1988) using on geochemical
arguments. These authors showed that partial melting that would occur due to adiabatic

a b

Figure 58: Cartoon showing two possible motions of the asthenosphere below mid oceanic
ridges. a Asthenospheric material wells up below the mid ocean ridge in form of a mantle

plume. During this process, adiabatic decompression of asthenosphere material will cause
massive partial melting. It is thought that this situation pertains to regions where these
melts are now present as large igneous provinces like the Karoo Basalts in southern Africa
or the Deccan Traps in India and may be Iceland. b shows the mantle motion that is
thought to be representative for most mid oceanic ridges.
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Figure 59: The force exerted
by mid-oceanic ridges onto
the surrounding plate per
meter length of ridge, shown
as a function of age of the
oceanic lithosphere.
Calculated with eq. 127.
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decompression of upwelling melt in a mantle plume would be enough to form a 15 km
thick oceanic crust. In contrast, normal oceanic crust is measured to be only about 5–
7 km thick. This thickness can be produced by adiabatic melting of only the upper most
asthenospheric regions. Asthenospheric flow as sketched in Fig. 58b is sufficient to produce
a 5–7 km thick oceanic crust. Thus, it is thought that the flow directions of asthenospheric
convection have little to do with the position of the mid-oceanic ridges. There are only very
few places where mid-oceanic ridges coincide with diapirically upwelling mantle material.
One of these places is Iceland.

11.1.2 Slab Pull and Trench Suction

Old oceanic lithosphere is denser that the underlying asthenosphere and it has therefore
a negative buoyancy and it wants to sink. However, because oceanic lithosphere is very
strong and stiff, it cannot immediately do this as soon as it reaches this critical age where
its density becomes large compared to that of the underlying asthenosphere. Rather, the
oceanic plate “glides” along the surface of the asthenosphere until this gravitationally
unstable configuration is brought out of balance and a subduction zone forms. Once the
edge of such an old oceanic plate has begun to subduct, it drags the remainder of the
plate behind it. This is what is called slab pull. Such subduction processes may cause,
or may be caused by, small scale convection in the upper mantle. This convection occurs
predominantly in the wedge shaped region between the subducting and the upper plate.
Once such a convection system is set up, it may actually drag both the upper plate and the
subducting plate into the subduction zone. This is what is called trench suction. Slab pull
is gravitationally induced, simply because the dense oceanic lithosphere wants to sink into
the less dense upper mantle. In fact, the slab pull force is reinforced by the fact that the
density of the down-pulling slab increases significantly once it has passed the olivine-spinel-
transition at roughly 400 km depth. The magnitude of slab pull is roughly 1013 Nm−1

(s. Turcotte and Schubert 1982). Thus, slab pull is about an order of magnitude larger
than ridge push. However, it is likely that slab pull is being counteracted by frictional
stresses of about the same magnitude between the sinking plate and the surrounding
asthenospheric mantle. Thus, the net force exerted by subduction zones onto the foreland
need not be very large.



90 GEO.916: Unit 11

z z

zzs zzs

a b

Figure 60: Illustration of vertical stresses and potential energy differences between two
neighboring lithospheric columns. Vertical normal stress is plotted as a function of depth.
The shaded region between the two curves is the potential energy difference per area
between the two adjacent columns. In a this difference is positive in the upper part of the
lithosphere (light shading) but negative in the lower part (dark shading). This means, that
there is a net force acting from the right hand column towards the left hand column, while
this net force is directed towards the right in the lower part. Because both shaded regions
are roughly of the same area, there is practically no net force between the two columns,
averaged over the thickness of the lithosphere. In b the entire right hand lithospheric
column exerts a net force onto the left hand column.

11.2 Forces in Continental Plates

Inside the continents, plate tectonic driving forces arise predominantly from lateral varia-
tions in the density structure, which cause lateral variations in potential energy. When we
discussed Fig. 57 we have already estimated the magnitude of these forces for a plate of
constant density but variable thickness (eq. 125). In this section we want to refine these
estimates. Fig. 60 illustrates two examples of potential energy differences between two
lithospheric columns. Similar to Fig. 57 this potential energy difference is given by the
shaded region between the two curves for vertical normal stress as a function of depth.
This area corresponds to Fb in eq. 122 and may be interpreted as the net force exerted by
one column onto the other per meter length of orogen and averaged over the thickness of
the lithosphere (horizontal buoyancy force).

The considerations of Fig. 60 may be quantified by integrating eq. 122 and using simple
descriptions for density as a function of depth. If we assume a simple lithosphere of
two layers (a crust and a mantle lithosphere) and assume a linear thermal profile in the
lithosphere so that the density due to thermal expansion may be described with eq. 72,
then the lateral buoyancy force is described by:

Fb

ρmgz2c
=

δ(1− δ)

2
(f2

c − 1)− αTl

6(zc/zl)2
(

f2
l − 1− 3δ(fcfl − 1)

)

+
α2T 2

l

8(zc/zl)2
(1− f2

l ) (128)

(Turcotte 1983; Sandiford and Powell 1990). All parameters in this equation are the
same as those we used in eq. 78 to calculate the elevation of mountain belts in isostatic
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Figure 61: Diagram of lithospheric thickening strain fl plotted against crustal thickening
strain fc and contoured for potential energy difference per area (equivalent to: “hori-
zontal buoyancy force per meter” or: “lateral force”). The potential energy difference is
always that between any point in fc-fl space and the reference lithosphere at fc=fl = 1.
The diagram was calculated with eq. 128 and is contoured for Fb in 1012 Nm−1. Other
assumptions are: ρm = 3200 kgm−3; ρc =2750 kgm−3; α = 3 · 10−5; zc = 35 000 m;
zl = 125 000 m; Tl = 1200 ◦C. The curvature of the contours arises because of the quadratic
dependence of potential energy on thickness.

equilibrium but the definition of δ differs from that of Sandiford and Powell (1990) and
the way eq. 128 is written here differs therefore slightly from theirs as well. Here δ is
the density ratio of crust and mantle lithosphere δ = (ρm − ρc)/ρm, g is the gravitational
acceleration, Tl the temperature at the base of the lithosphere and α is the coefficient of
thermal expansion and fc and fl are the vertical thickening strains of the crust and the
lithosphere, respectively. Lateral forces calculated with eq. 128 are shown in Fig. 61.
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12 Unit: Dynamic Evolution of Orogens

At the end of Unit 10 we ahve already discussed the force balance of orogens in a qualitative
way and have seen how the orogen will converge to a staeady state as the buoyancy forces
that oppose the driving forves get larger. With our now-gained knowledge on potential
energy we will quantify these considerations in this section.

• Building up potential energy In sect. 11.0.5 we showed that the potential energy
of orogens grows with the square of the surface elevation and with the square of the
thickness of the orogenic root (eq.124). Thus, it takes significantly more energy to increase
the surface elevation of a high mountain range by one meter than it takes to increase
the elevation of a low range by the same amount (Molnar and Tapponier 1978). As a
consequence, the height of a mountain range and the thickness of an orogenic root are
limited, if the driving force is a constant. This limiting elevation is reached when the
potential energy of the range per square meter area is exactly as large as the tectonic
driving force per meter length of orogen. Then, a steady state equilibrium of the forces is
reached.

In order to understand how this equilibrium is reached, consider Fig. 62a, which illus-
trates a very simple model orogen. The left of this diagram shows normal thick crust of the
thickness zc and the density ρc. On the right, this diagram shows an elevated mountain
range in isostatic equilibrium of the elevation H. The diagram is equivalent to Fig. 57.
The difference in potential energy between the two mountain range and the foreland per
square meter of area is given by eq. 125 and 126. Let us also recall that ∆Ep is a poten-
tial energy per area and has the units of Jm−2 and may also be interpreted as the mean
net horizontal force exerted by the mountain range onto the foreland per meter length of
orogen.

Figure 62: a Cartoon of a collisional orogen showing crust of normal thickness on the
left and a mountain range on the right. Further displacement of the crust from left to
right is compensated in b by further thickening and in c by lateral growth of the range.
The difference in deformation style between b and c causes a significant difference of the
potential energy of the mountain range (see eqs. 129 to 132) (s. also Fig. 57; after Molnar
and Lyon-Caen 1988).
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By analogy, the potential energy per meter length of orogen may also be interpreted
as the product of the potential energy per area times the width of the mountain range l.
From eq. 126 we can derive directly that:

∆Ep,m−1 = ρcgHl (H/2 + zc + w/2) . (129)

The subscripts are used to emphasize that we are dealing with the units of potential energy
difference per meter , while the ∆Ep that we used in eq. 125 and eq. 126 has the units
of potential energy difference per area. Further growth of the mountain range may now
proceed either in the vertical direction (Fig. 62b) or in the horizontal direction (Fig. 62c).
If the crust inside the orogen is doubled in thickness, then the potential energy of the
range per meter grows to the following value:

∆Ehigh
p,m−1 = 2ρcgHl (H + zc + w) . (130)

If the growth of the mountain range is by doubling its width (at constant thickness, as
shown in Fig. 62c), then the potential energy per meter growth to the following value:

∆Ewide
p,m−1 = 2ρcgHl (H/2 + zc + w/2) . (131)

The difference of the potential energy increases between the two deformation styles is given
by the difference between eq. 130 and eq. 131:

∆Ehigh
p,m−1 −∆Ewide

p,m−1 = ρcgHl (H + w) =

(

ρcρm
ρm − ρc

)

glH2 . (132)

The last simplification in the equation above was performed using the isostasy condition
∆ρw = Hρc that we also used in eq. 126. Eq. 132 shows us that it takes significantly
less energy to thicken the crust in the foreland of a mountain belt (i.e. to widen the
range) than it takes to increase the thickness of the crust in the mountain range itself
(i.e. to increase the elevation of the range). Because of this, it is not necessary that
convergence between two plates will stop when the gravitational extensional force Fb has
reached the same magnitude as the tectonic driving force Fd acting towards the orogen.
It is just that the convergence cannot be compensated anymore by vertical growth of
the range, but will be compensated by lateral growth of the range towards the fore- or
hinterland. Thus, active deformation in the range itself will come to a halt, the zone of
active deformation propagates into the fore- and hinterland. A plateau will form in the
center. In the process, the transition zone between the region where the largest principle
stress is oriented horizontally and the region where it is oriented vertically will shift also
towards the foreland.

Note that - despite these dramatic changes of the deformation and stress fields in the
orogen - nothing has changed in the overall kinematics or stresses of the collision zone as
a whole (Molnar and Lyon-Caen 1988): The driving forces have remained constant and so
has the convergence between the two colliding plates. Understanding these relationships
should therefore serve as a warning to structural geologists who are tempted to infer the
overall kinematics of an ancient orogen from field observations on the kinematics of a few
rocks.
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Extension

Shortening

Figure 63: Distribution of horizontal and vertical stresses in a simple collisional orogen.
If the topographic gradients at the surface and the base of the lithosphere are small, then
the horizontal and vertical stresses σxx and σzz are parallel to the principal stresses. The
horizontal stresses are constant across the orogen. However, the vertical stresses at a
constant crustal level are higher in the orogen and smaller in the foreland. Thus, the
largest principal stress in the foreland is given by σxx, while it is given by σzz in the
orogen.

12.0.1 Mechanics on Vertical Sections

Many continental orogens are long compared to their width. In such orogens many pa-
rameters do not change very much in the direction parallel to the orogen and it is often
possible to neglect this direction altogether when describing the orogen: We can char-
acterize them with a description on a vertical cross section and the equations that must
be solved to describe this are eq. 156 and eq. ??, but omitting all terms that contain y.
However, in this section we refrain from integrating these equations and simply expand
on the discussion of the last section.

• Changes in the stress field in collisional orogens In the discussion of eq. 132 we
have shown that the stress field in an orogen may change over time, even if the far field
plate boundary stresses remain constant. Here we illustrate this in some more detail by
looking at the changes of the stress state across a mountain belt. In this discussion we
follow the logic of Dalmayrac and Molnar (1981) as well as Molnar and Lyon-Caen (1988).

If the shear stresses at the base of the lithosphere are negligible, then the horizontal

forces in a simple orogen (simplified as shown in Fig. 63) are constant, regardless of
thickness of the plate or surface elevation (Artyushkov 1973; Dalmayrac and Molnar 1981).
In other words, the product of the mean horizontal stress σxx and the thickness of the plate
remains a constant. Thus, if the stresses are a similar function of depth in different parts of
the orogen, then the horizontal stress σxx is constant at any one depth across the orogen.
This also implies that mountain ranges and plateaus transmit horizontal forces from the
foreland to the hinterland of the orogen without changing their magnitude. On Fig. 63
this is indicated by the horizontal white arrows that are of the same size everywhere across
the orogen.

This logic does not apply to the vertical stresses. Vertical stresses are the largest in
regions where the overlying rock column is the thickest and the smallest where it is the
thinnest (s. Fig. 57). As a consequence, the stress distribution in an orogen may be like
that shown in Fig. 63. In the foreland (on the left in this figure) the vertical stress is
smaller than the horizontal stress. The region is thickening, for example by thrusting.
In the mountain belt (strictly: in the region of high potential energy, s. sect. 11.2), the
largest principle stress is the vertical stress. The region is extending. In short: although
the horizontal stress on Fig. 63 is everywhere the same, there is thickening in parts of
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Figure 64: Fault plane solutions for the two great plateaus on this planet. a The Tibetan
Plateau as the consequence of the India – Asia collision and: b the Altiplano as the
consequence of the collision between the Pacific and the South American plates. Note
that the majority of the fault plane solutions at low elevation regions indicate compression,
while those on top of the plateau indicate largely extension.

the Figure and extension in others. On Earth, there are two orogens that have reached
mechanical equilibrium and have formed plateaus. The Altiplano and the Tibetan Plateau.
On both the transition from compression (in the foreland) to extension (on the plateau)
can be observed (Fig. 64).

The lateral qualitative change in the deformation regime is not caused by changes in
the horizontal- but changes in the vertical stress. This also explains why the observation
of extension in mountainous regions must not occur because the surrounding plates are
moving apart. The Tibetan Plateau is an example for such a situation: although the
plateau is extending laterally, there is thrust tectonics in the surrounding regions (s. p.
95 and p. 98).

12.0.2 Mechanics in the Plane

Many collisional orogens have features that may only be described by considering defor-
mation in plan view, for example processes like lateral extrusion. Because the vertical
direction can then not be considered, vertically averaged assumption for lithospheric rhe-
ology and thermal structure have to be made. There are two common ways how to do
this. These are the plane strain assumption and the thin sheet (plane stress) assumption.
Which of the two assumptions is more appropriate for the description of orogens has been
a subject of debate between the schools of Tapponier on the one side (e. g. Molnar and
Tapponier 1975; 1978) and that of England, Houseman and McKenzie on the other side
(e. g. England and McKenzie 1982; Houseman and England 1986a; England and House-
man 1986; 1988; Molnar and Lyon-Caen 1988).

The plane strain approximation helps to reduce three-dimensional problems to two
dimensions. It assumes that all deformation is strictly two-dimensional so that all strain
and displacement occurs in plane and no strain perpendicular to this plane. In plate
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tectonic modeling we normally consider only the case of no volume change. Then, the
total amount of shortening in one spatial direction must be compensated by stretching
in the other. No area change occurs. Tapponier (e. g. 1982) has made great advances in
our understanding of continental deformation using this assumption in his descriptions
of the India-Asia collision. Plane strain deformation may be viewed as the deformation
of a thin film of material that deforms between two fixed parallel plates. It is not plane

stress, as the normal stresses on the surfaces of the confining plates will vary, depending on
where deformation concentrates. Plane strain modeling is a good approximation when the
lateral extent of deformation is much larger than the extent in the direction normal to the
two modeled dimensions, e.g. crustal thickening or thinning when modeling continental
deformation in plan view.

Thin Sheet Approximation When lithospheric shortening in one horizontal direction
is compensated both by stretching in the second horizontal direction and by thicken-
ing (or thinning) in the vertical, the lithospheric deformation becomes three-dimensional.
However, such scenarios can still be modeled in two dimensions assuming the thin sheet

approximation (s. e.g. Houseman and England 1986a; s. however: Braun 1992). The thin
sheet model is based on the assumption that the normal stresses at the surfaces of the
plate are constant and that there are no shear stresses on horizontal planes. Thus, the
thin sheet approximation is also called the plane stress approximation. As a consequence,
the plate may thicken or thin in the vertical direction as to maintain the surface stresses
constant but there are no vertical strain rate gradients (England and McKenzie 1982,
England and Jackson 1989). Using z for the vertical spatial coordinate and ǫ̇ for strain
rate, this can be described by:

dǫ̇

dz
= 0 . (133)

The thin sheet approximation is a good approximation for the description of lithospheric
scale deformation when:

1. The shear stresses at the surface and the base of the lithosphere are negligible.

2. If the topographic gradients at these two surfaces are small.

Both are usually given on the scale of whole lithospheric plates and the thin sheert ap-
proximation is therefore commonly used in two dimensional orogenic scale models.

Within both the plane strain and the thin sheet model we need to consider the force
balance equations (Unit 13). These may be solved for evolving orogens is a flow law is
assumed. Usually this flow law is assumed to be a non-linear viscous flow according to
the relationship:

(σ1 − σ3) = Bǫ̇
(1/n)
l or : ǫ̇l = B−n(σ1 − σ3)

n (134)

in which we can recognize a simplification of the viscous relationships explained in eq. 108
and eq. 111. The constant B summarizes all temperature dependent terms of the power
law (eq. 112) and represents a depth averaged value when doing thin sheet calculations. A
comparison of eq. 112 with eq. 134 shows that: B = A(−1/n)eQ/nRT . In short, B depends
on strongly on temperature, but it can be shown that it is largely independent of the
distribution of temperature within the lithosphere. Using the simplification of eq. 134 the
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lithosphere may be considered as a simple medium deforming according to a power law
relationship between stress and strain rate. Usually eq.134 is generalised in the form:

τ = BĖ( 1

n
−1)ǫ̇ (135)

where Ė is the 2nd invariant of the strain rate tensor (Ė =
√

ǫ̇ij ǫ̇ij) and τ and ǫ̇ are the
deviatoric stress and strain rate tensors. Eq.135 is a proper vector equation (like eq. 108)
and the flow law can now be coupled with the force balance above. The non linearity
between deviatoric stress and strain rate is taken care of by introducing the deformation
dependent term Ė. In this form, eq.135 is the basis of many dynamic models for the
description of continental deformation, for example those of England and McKenzie (1982)
or Vilotte et al. (1982). In these models, the nature of deformation is often characterized
by a single value: the Argand number.

Length scale L = U0/ǫ̇0
Velocity scale U0 = L× ǫ̇0
Strain rate scale ǫ̇0 = U0/L

Viscosity scale B = τ0/ǫ̇0
Stress scale τ0 = B × ǫ̇0

Argand number Ar ∝ L/τ0

Table 7: Scaling parameters in non dimensional viscous calculations. For simplicity, the
stress exponent is assumed to be n = 1. Time scale t is not specifically listed here as it
is simply t = ǫ̇−1

0 . In calculations where there is no Argand number, two of the top three
variables and one of either viscosity- or stress scale are independent. Specifying Ar relates
the top three to the next two variables, so that only two other scaling parameters must
be chosen to define the system

• The Argand number The Argand number Ar is a measure for the ease with which
the lithosphere deforms in response to gravitational stresses. It tells us if an orogen is likely
to flow apart at the same rate it is being built, or if significant amounts of potential energy
may be stored within it before it would collapse slowly under the influence of gravitational
stress. England and McKenzie (1982) showed that these gradients in vertical stress are
proportional to the square of the crustal thickness S:

∂σzz

∂x
∝ ∂S2

∂x
or :

∂σzz

∂x
=
(

−gρc
2L

(1− ρc/ρm)
) ∂S2

∂x
(136)

for reasons discussed on p. 83. In eq. 136 the densities are those commonly used in this
book and L is a thickness of the considered layer. If this is substituted into eq. ?? and
the equation is brought into a non-dimensional form by normalizing to the length scale L,
stress scale τ0 and velocity scale U0 (the collision velocity), then the Argand number is:

Ar =
ρcgL(1− ρc/ρm)

B(U0/L)1/n
=

P(L)

τ0
. (137)

and may be interpreted as dimensionless ratio of the additional pressure P(L), that arises
because of the thickness difference L between two plates and the stress τ0, that is necessary
to deform a plate with a significant rate ǫ̇0 = U0/L (England and McKenzie 1982).
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In this form, Ar may be used as an input parameter for mechanical modeling of orogens
without having to explicitly consider the rheology, the material constants or the temper-
ature profile of the lithosphere (Table 7). The additional pressure rises linearly with the
thickness of the orogen and the stress τ0 increases with the effective viscosity of the plate.

We can see that – if the effective viscosity of a plate is large, then the Argand number
is small. Then, the flow properties of a mountain belt will depend largely on the orogenic
boundary conditions. The belt will only begin to extend once its potential energy is very
large. In contrast, if the Argand number is large (say between 10 and 20), then the effective
viscosity of the range is very small and the forces caused by potential energy differences
are large. The crust will quickly flow in response to applied forces. No significant thickness
variations between foreland and orogen will ever develop during orogenesis.

• Orogen parallel displacement Collision of continents causes displacement of rocks
in all three spatial directions. The vertical displacement results in thickening, the horizon-
tal displacement in direction normal to the indentation direction is called loosely lateral

extrusion and may occur in either a compressional or extensional regime.
Fig. 65a shows the collision of a plate with a rigid indenter that deforms the plate in

front of it. The rocks in front of the indenter are displaced both in the direction of in-
dentation and perpendicular to that direction. In Fig. 65a the amount of displacement
decreases with distance from the indenter as the deformation there dissipates more. How-
ever, despite the orogen parallel displacement of rocks, all points of the indented plate
are under compression. There is no lateral extension. This conclusion from Fig. 65a is in
contrast to many observations in active collisional orogens where lateral extension does oc-
cur. According to England and Houseman (1989) orogen parallel extension in convergent
orogens must find its nature in one of the following four processes:

1. unconstrained boundaries,

2. decrease in the convergence rate between two plates,

3. changes in the rheology of the plate,

ba

Indenter Indenter

Figure 65: Different deformation regimes that occur during collision of an indenter with
a much larger continental plate (gray shaded region). The arrows are velocity vectors.
In a the plate is infinite or bound at all sides. In b the side boundaries of the plate are
free and lateral extension occurs. The absence of confined model boundaries is one of
four mechanisms that can account for orogen parallel extension during convergent plate
motion.
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4. external addition of potential energy to the plate.
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Figure 66: Model for the lateral extrusion of the Eastern Alps illustrating the influence
of Argand number Ar on the deformation regime during continental indentation (after
Robl and Stüwe 2005). a The 4 considered regions and their relative viscosity contrasts:
European foreland (10), Adriatic indenter (10), Pannonian Basin (0.8) and Eastern Alps
(1). For Ar = 1 and even for Ar = 10, significant topography (gray shading) is built in
the Alps and lateral extrusion is exclusively due to tectonic forcing. For Ar = 100, lateral
extrusion is increased (a little bit) by an additional contribution of extensional collapse.
However – although barely any topography is suported – the extensional collapse is still
in an overall compressive regime (because indentation goes on).

The first of these four processes is illustrate in Fig. 65b. There – in contrast to Fig. 65a
– the gray shaded region is not bound on the sides. The other three processes may be
illustrated with an analysis of eq. 117. A decrease in the convergence rate is reflected
in this equation by a decrease in Fd. If Fl remains constant, the horizontal buoyancy
force must decrease and extension sets in. This process is generally known as “post
orogenic collapse”. Changing the rheology of the plate (e. g. by heating, recrystallization,
metamorphism etc.) is reflected in eq. 117 by changes in Fl. In order to maintain the force
balance, strengthening of the plate must be accompanied by a decrease in the deformation
rate or a decrease in the horizontal buoyancy force Fb. Extension occurs as a consequence.
The external addition of potential energy, for example by delamination of the mantle part
of the lithosphere may also cause the transition from compression to extension.

• Lateral extrusion Lateral extrusion of orogens is a great term that can be used
when referring to lateral displacement of rocks without wanting to specify if its under
a compressional or extensional regime. According to Ratschbacher et al. (1991), lateral
extrusion describes lateral motion of rocks as the consequence of a combination of tectonic
escape (in a compressional regime) and gravitational collapse (in an extensional regime).
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While the term lateral extrusion is mechanically not specified and is a largely a kinematic
description, the terms tectonic escape and gravitational collapse have well defined mechan-
ical implications that were described by Tapponier et al. (1982) (Jones 1997) and Dewey
(1988), respectively. Both processes are observed in the eastern European Alps, where ex-
tensional tectonics is observed along the east and west margins of the Tauern window ) and
simultaneous tectonic forcing along major strike slip lineaments has occurred (Selverstone
1988; Ratschbacher et al. 1991; Robl and Stüwe 2005).

Table 8: Definition of terms related to lateral displacement of rocks during indenter tec-
tonics on an orogenic scale

term meaning
(key reference)

lateral extrusion kinematic description for displacement of

(Ratschbacher et al. 1991) rocks normal to indentation direction

(stress regime: undefined)

gravitational collapse extension under its own potential energy

(Dewey 1988) (stress regime: extensional)

tectonic escape active lateral forcing along strike slip faults

(Tapponier et al. 1982) (stress regime: compressional)
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13 Unit: A Reminder of Stress and Strain

In many parts of this course, we talked abotu stress and strain. Here we repeat the basics.

14 Strain - The Basics

• Normal strain Normal- or logitudinal strains are encountered very often in this
course, for example when we talk about the thickening strains fc and fl. Normal strain
simply relates the length of a body after deformation l to the length before deformation
l0. We define the following common terminology: The stretch of a rock s is the ratio of its
length after deformation l to that before deformation l0. Its elongation is the ratio of the
change in length and the original length. We call this e. We can write the relationship
between stretch (uniaxial strain), elongation and length in short:

s =
l

l0
= 1 + e = 1 +

(

l − l0
l0

)

. (138)

Figure 67: Deformation of a unity cube for the explanation of strain. a Deformation under
normal strain also referred to as pure shear. b Deformation under shear strain also referred
to as simple shear. c Rotation of the unity cube showing that displacement gradients can
exist without internal strain.

Both s and e are often loosely referred to as “strain”. It is therefore important to under-
stand their respective meaning when we try to understand kinematics. With reference to
Fig. 67a: s = (dy + duy)/dy, where duy is the displacement du in direction y.

• Shear strain is defined as the change in displacement with respect to a direction that
is normal to this displacement. Shear strain is often referred to as γ and is given by the
ratio of dux to dy in Fig. 67 b so that:

γ = tanφ =
dux

dy
. (139)

The angle φ is called the angular shear strain.

• General displacement In a general state of deformation (for example somewhere
between Fig. 67a and b) scalar values of s and γ are insufficient to describe the deforma-
tion and we require both shear and normal displacements, both in all considered spatial
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directions. In total, the deformation of a rock may be described by what is called the dis-
placement gradient tensor D, which is a tensor containing all shear and normal gradients
in displacement. This tensor is given by:

D =

(

∂ux

∂x
∂ux

∂y
∂uy

∂x
∂uy

∂y

)

(140)

The displacement gradient is also called the Jacobian matrix or the deformation tensor

and its individual components might be abbreviated with ∂ui/∂j. This tensor describes
the deformation of a unity cube perfectly well. Clearly, the examples for simple and pure
shear discussed above may also be written in terms of this tensor, but several of the terms
will be zero.

It is important to note that the displacement gradient tensor does not describe strain.
For example, the rotating cube in Fig. 67c has definitely displacement gradients in both x
and y direction, but it does not strain. Indeed, even for the simple shear example shown
in Fig. 67b, the shear strain γ does not describe the strain of the body correctly, as it may
be shown that part of the “simple shear” deformation is rigid body rotation. Fortunately
(because of its symmetry), the displacement gradient tensor may always be expanded so
that it can be resolved into two parts:

∂ui

∂j
=

1

2

(

∂ui

∂xj
+

∂uj

∂xi

)

+
1

2

(

∂ui

∂xj
− ∂uj

∂xi

)

(141)

The first term on the right hand side of this equation is called the strain tensor ǫij , the
second part describes the rigid body rotation ωij . Adding a translation of the body u, we
can write the full deformation of a body by:

ui + dui = ui + ǫijdxi + ωijdxi (142)

Eq. 142 is a full description of deformation of rocks including their translation (first term),
their strain (second term) and their rotation (third term). Rotational components of
deformation are very much the field of structural geology and are not discussed further
here. However, the strain tensor and its time derivative, the strain rate tensor, are needed
in several parts of this book and we therefore write it out in full as:

ǫij =
1

2

(

∂ui

∂xj
+

∂uj

∂xi

)

=





∂ux

∂x
1
2

(

∂ux

∂y +
∂uy

∂x

)

1
2

(

∂uy

∂x + ∂ux

∂y

)

∂uy

∂y



 (143)

The strain rate tensor looks identical to eq. 143 if u is considered to be velocity and not
displacement. Just like the stress tensor, the strain tensor is symmetric and the invariants
of the strain tensor matrix are of some importance, for example when considering flow
laws or shear heating.

14.1 The Stress Tensor

There are many excellent descriptions of stress in an abundance of good text books (e. g.
Means 1976; Suppe 1985; Engelder 1993; Pollard and Fletcher 2006). Here we only sum-
marize the definitions of a few terms related to stress (Engelder 1994).
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14.1.1 Force

Force is a vector and - like all vectors - is described by a magnitude and a direction. It has
the units of mass × acceleration: 1 N = 1 kg m s−2. A related vector quantity is traction.
Traction is a force (with magnitude and direction) per area, where the orientation of this
area is not defined. Tractions may be subdivided into normal and parallel components
called normal traction and shear traction. It is important to note that tractions are
vectors, although they have the same units as stress. In contrast, stress is a tensorial
quantity described by all the tractions acting on a unit cube.

14.1.2 The Stress Tensor

In three-dimensional space, the state of stress of a single point inside a rock (i.e. a unit
cube) is given by nine numbers, all of which have the units of force per area. These nine
numbers are all tractions acting on different planes and different directions that need to be
defined by using subscripts. These nine numbers define the stress tensor which is typically
written as:

σ =





σ11 σ12 σ13

σ21 σ22 σ23

σ31 σ32 σ33



 =





σxx σxy σxz

σyx σyy σyz

σzx σzy σzz



 (144)

The two different notations of subscript used in eq. 144 are both common in the literature.
The first of the two specifying spatial indices x, y and z (or 1, 2 and 3) indicates the
direction in which the stress component acts. The second index indicates the normal to the
plane on which this stress component acts. We can see that the three tensor components
in the diagonal of this matrix have two identical indices. They are called normal stresses

because the surface onto which the stresses act are normal to the direction in which they
act, (i.e. the indices for “direction in which it acts” and “plane onto which it acts” are
the same). In the following we abbreviate normal stresses with σn. The remaining six
components of stress in eq. 144 are shear stresses. In these, the stress components
they describe act parallel to the plane onto which they are exerted. Shear stresses are
abbreviated here with σs.

The stress components in a given column of eq. 144 act on the same plane, but in
different directions. The rows contain stress components oriented in the same direction,
but acting on different planes. In the literature, shear stresses are often abbreviated
with τ and normal stresses with σ. However, this notation is somewhat confusing as all
components of the tensor have the same units and should be abbreviated with the same
symbol. We therefore stick to the notation of eq. 144 in particular to the use of x and y
rather than 1 and 2 as subscripts and describe shear stresses with σi6=j or σs and normal
stresses with σi=j or σn. We reserve τ as a symbol for deviatoric stress.

The stress tensor is symmetrical, that is, each component above the diagonal has an
equivalent component of equal magnitude below it: σyx = σxy, σzx = σxz, σyz = σzy.
Thus, the stress tensor consists of only six independent numbers: three normal stresses
(written in the diagonal) and three shear stresses (the off diagonal terms).

The state of stress described by eq. 144 can be expressed a bit more simply in a dif-
ferently oriented coordinate system. Because of the symmetry of the stress tensor, it is
always possible to assume a coordinate system with the coordinates x′, y′ and z′, in which
all shear stresses (all off diagonal terms in eq. 144) become zero. The diagonal components
in this new coordinate system are called principal stresses. Principal stresses are denoted
with a single subscript as σ1, σ2 and σ3. In the Earth sciences it is common to use the
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Figure 68: a The state of stress of a unit square within the two dimensions of this book
page. In two dimensions, the stress tensor has only four independent components illus-
trated here by the four labeled arrows. In b the coordinate system x′, y′, z′ was chosen
in such an orientation so that the shear stresses become zero. The normal stresses become
therefore principal stresses. The state of stress of the square in a and b is identical.

subscript “1” for the largest principal stress and “3” for the smallest. Thus, the state of
stress at a point may always be characterized by only three principal stresses (Fig. 68):

σ′ =





σ′
xx 0 0

0 σ′
yy 0

0 0 σ′
zz



 =





σ1 0 0
0 σ2 0
0 0 σ3



 . (145)

The order in which σ1, σ2 and σ3 appear in eq. 145 implies that the new coordinate
system was chosen here so that the x′-axis is parallel to the largest of the three principal
stresses. Of course this need not be the case. Also note that the numbers denoting the
three principal stresses have nothing to do with the spatial subscripts we briefly used in
eq. 144. They simply refer to the largest, the intermediate and the smallest of the three
principal stresses.

Fortunately, in the Earth’s crust the principal stresses are often oriented roughly parallel
to the vertical and the horizontal directions, because the shear stresses at the earth’s
surface (e.g. by wind) and at the base of the lithosphere (e.g. by mantle convection) are
both negligible.

14.1.3 Mean Stress

The mean stress σm is given by the mean of the three principal stresses. It is therefore
independent of the coordinate system:

σm = P =
σ′
xx + σ′

yy + σ′
zz

3
=

σ1 + σ2 + σ3

3
. (146)

The mean stress is also called pressure P . Strictly speaking, the mean stress is the me-
chanical definition of pressure, while a chemist or thermodynamicist would say that work
is the product of pressure and volume change and that, therefore, pressure has the units of
energy per volume (1 Pa = 1 J m−3). The most common place where geologists encounter
these non-intuitive units for pressure is when looking up the molar volumes of mineral
phases. These are generally quoted in the units Joule per bar. As the volume change may
be highly anisotropic in an anisotropic stress state, chemically defined pressure may be
determined by integrating the volume change over the surface of a unit volume.
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14.1.4 Differential Stress

Differential stress is a scalar value defined as the difference between the largest and the
smallest principal stress:

σd = σ1 − σ3 . (147)

It is a measure of how far the stress state deviates from the isotropic state. As such,
differential stress relates directly to deviatoric stress τ . In fact, we will see that τ1 =
σd/2 and that τ3 = −σd/2. During viscous (ductile) deformation, the application of any
differential stress will cause permanent deformation.

14.1.5 Deviatoric Stress

Unlike mean stress, pressure or differential stress, deviatoric stress is not a single number,
but a tensor, denoted commonly with τ . This tensor is defined by the deviation of the
stress tensor in a general coordinate system (i.e. eq. 144) from the mean stress (i.e.
pressure):

τ =





τxx τxy τxz
τyx τyy τyz
τzx τzy τzz



 =





σxx − P σxy σxz

σyx σyy − P σyz

σzx σzy σzz − P



 . (148)

It can be seen that the total stress tensor is the sum of the isotropic stress tensor plus the
deviatoric stress tensor:




σxx σxy σxz

σyx σyy σyz

σzx σzy σzz



 =





P 0 0
0 P 0
0 0 P





+





σxx − P σxy σxz

σyx σyy − P σyz

σzx σzy σzz − P



 . (149)

This equation may also be writte in short as:

σ = P1 + τ . (150)

where 1 is the identity matrix. In the viscous regime, only deviatoric stresses (right hand
term in eq. 149) cause deformation. In contrast, elastic deformation occurs in response to
the total stress state as described by the left hand side of eq. 149 (Fig. 69).
For a coordinate system parallel to the principal stress directions the deviatoric stress
tensor may simply be written as (in analogy to eq. 145):

τ ′ =





τ ′xx 0 0
0 τ ′yy 0
0 0 τ ′zz



 =





σ1 − σm 0 0
0 σ2 − σm 0
0 0 σ3 − σm



 . (151)
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Figure 69: a Relationship between stress σ and strain ǫ for elastic, plastic and brittle
deformation. Curve ii is for the ideal case of plastic (ductile) deformation; i is with strain
hardening; iii with strain softening. b Relationship between stress and strain rate ǫ̇ for
three different viscous materials. For a Newtonian fluid this relationship is linear. The
number n is the power law exponent.

• Simple examples for the use of deviatoric stress The deviatoric stress tensor is
important as its components cause viscous deformation. The absolute magnitude of the
deviatoric stress tensor components indicates how rapidly a rock will strain (deform). A
rock will extend in the direction in which the deviatoric stress components are negative
(negative is tensional in the Earth science convention), even if all the principal stresses
indicate compression (s. Fig. 70). Thus, when making cartoons of a field terrain it is
always most instructive to sketch arrows for the principal components of the deviatoric
stress tensor onto them, as their magnitude and direction corresponds to what is observed
kinematically in the field (s. Fig. 65). Two rocks from different crustal levels may suffer
the same deviatoric stresses and therefore deform similarly, but they may be in completely
different states of total stress.

Let us consider a simple two dimensional example (there are only two principal stresses
σ1 and σ2) where both σ1 and σ2 are positive (the rock is under compression) and the
mean stress is σm = (σ1 + σ2)/2. Then, according to eq. 149, the principle components of
deviatoric stress are: τ1 = σ1−σm = (σ1−σ2)/2 and τ2 = σ2−σm = −(σ1−σ2)/2. We can
see that the largest principal component of the deviatoric stress tensor is τ1 = σd/2 and the
smallest is τ2 = −σd/2. We can summarize this information with a more applied example
of a continent that is under horizontal compression where the principle components of
stress σxx and σzz are parallel to the horizontal (x) and vertical (z) directions. There, the
principle horizontal deviatoric stress is:

τxx = σxx − σm =
σxx − σzz

2
=

σd

2
. (152)

Fig. 70 illustrates the state of stress of a rock cylinder as expressed in terms of the deviatoric
stresses (left) and total stresses (right).

14.1.6 Strength

Strength, failure strength or shear strength are terms used to describe the critical value
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t

t

Figure 70: Cartoon illustrating a typical uniaxial deformation experiment. The state of
deviatoric stress of the cylinder in a is identical to that of the cylinder in b. However,
in a it is not specified what the confining pressure is. This may be an arbitrary number
added to all deviatoric stress values. Nevertheless, if there is no additional confining
pressure, then a is consistent with the pressure inside both cylinders being 0.5 MPa,
although both σd and σ1 are 1.5 MPa. In a the state of stress is illustrated in terms of the
components of the deviatoric stress tensor. In b in terms of the uniaxially applied stress.
Because the experiment is uniaxial, all illustrated stress components are also principal
stress components both for the deviatoric stresses in a and the applied stress in b (after
Engelder 1994).

which the differential stress must reach to cause permanent deformation. As such it
is a material property. In the elastic regime, the term “strength” does not really have a
meaning and it is better to refer to rigidity or other terms explained in some more detail in
section 8.1 and 9.0.6. In the brittle regime, the strength depends directly on the magnitude
of the principal stresses and is given by the stress where the curve on Fig. 69a deviates
from its linear course. In the viscous regime, all differential stresses will lead to permanent
deformation (Fig. 69). and “strength” is dependent on strain rate. Strictly, therefore,
strength has no meaning in viscous deformation either and it is better to describe viscous
stresses via viscosity. Nevertheless, here we use the terms “strength”, “viscous strength”
and “differential stress” in a similar meaning and note that they relate by a factor two:

strength =
σd

2
. (153)

14.1.7 Stress Balance

The equations describing the balance of stresses are the basics for all mechanical descrip-
tions of deformation. A stress balance is a generalized form of Newton’s second law:

force = mass× acceleration . (154)

This equation is applied to a small volume of rock which may be subjected to surface forces
(applied to the surfaces of the small volume, e.g. by pushing it) and body forces (applied
to the small volume itself, e.g. by gravity). Eq. 154 has its only complication in that it is
a vector equation, because force is a vector. That is, it consists of three equations each of
which describe a force balance in one of the three spatial directions. Also, within each of
these equations, several surface and body forces must be summed up and set equal to the
product of mass times acceleration on the right hand side of the equations. Also note that
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Figure 71: Different surface forces acting on
a unity cube in the z direction. If z is the
vertical, then there is also a body force due
to gravity of the magnitude ρg. At rest,
each of the three labeled forces is compen-
sated by a force of equal magnitude but op-
posite direction. Other forces in the y- and
x-directions are not labeled for clarity.

D x

Dy

D z syz

sxz

szz

the equations of force balance are generally considered per unity volume so that eq. 154
is usually written in terms of force/volume = density × acceleration. The different forces
acting in the z direction can be summed up from Fig. 71. The sum is:
(

σzz +
∂σzz

∂z
∆z

)

∆x∆y − σzz∆x∆y +

(

σzx +
∂σzx

∂x
∆x

)

∆y∆z

−σzx∆y∆z +

(

σzy +
∂σzy

∂y
∆y

)

∆x∆z − σzy∆x∆z − ρg∆x∆y∆z

= ρaz∆x∆y∆z , (155)

where x, y and z are the three spatial directions, ρ is density, g is acceleration due to gravity
and az is the acceleration of the body in the z direction. Even if this equation appears
enormously complicated, it should be easy to follow it using Fig. 71. It simply states
that the difference in forces between any two sides of a unity cube result in acceleration.
We can see that the equation has six similar looking terms on the left hand side. Every
group of two terms describes a difference between the force on one side of the cube (e.g.
the 2nd term in eq. 155: σzz∆x∆y) and the force on the opposite side of the cube (e.g.
the 1st term in eq. 155: (σzz + (∂σzz/∂z)∆z)∆x∆y). If these are equally large, then the
body does not accelerate. If this difference is finite, then the body accelerates with the
rate written on the right hand side of the equation: ρ∂uz

∂t ∆x∆y∆z. Writing eq. 155 a bit
shorter we can write:

∂σzx

∂x
+

∂σzy

∂y
+

∂σzz

∂z
− ρg = ρaz . (156)

• Navier-Stokes equation Eq. 156 (plus its corresponding versions for the x and y
directions) can be reformulated into the famous Navier-Stokes equation if it is coupled
with a viscous flow law. We will encounter this in eq. 108, but use it already here briefly to
introduce this important equation. We also need the definition of strain rate from eq. 143
and the relationship between the stress and deviatoric stress tensors shown in eq. 150.
Then, we can insert the definition of strain rate into eq. 108 and that into eq. 150. The
resulting description of stress is then differentiated according to eq. 156 and we arrive at
the Navier-Stokes equation for an incompressible medium with constant viscosity:

−∇P + η∇2u = ρa+ ρg , (157)

In this form, we have placed both acceleration terms (that due to surface forces and that
due to body forces) on the right hand side of the equation. In particular the surface force
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related to acceleration (which is a instead of the earlier az meaning that acceleration may
be in all three directions) can also be expressed in terms of velocity changes, but we need
not do this here, as we will show below that is is negligible for most geological problems.

• Force balance equations In most geodynamic problems, acceleration is negligible.
Then, in the horizontal directions the term ρ∂ux

∂t = ρ
∂uy

∂t → 0 and in the vertical direction

ρ∂uz

∂t → ρg, as gravitational force is still felt as a body force. Thus, eq. 155 simplifies to
the following:

∂σzz

∂z
+

∂σzx

∂x
+

∂σzy

∂y
− ρg = 0 . (158)

Eq. 156 describes the equilibrium of stresses in the vertical direction and is generally
applicable in the earth sciences. The first three terms of this equation are the sum of
the surface forces acting in the z-direction, the fourth term is the volume or body force

downwards. In analogous equations for the x- and y-direction this fourth term does not
appear. The relationships for the x- and y-directions are formulated correspondingly, but
without the accelleration term due to gravity.

14.1.8 Tectonic Relevance of Momentum

In this section we discuss the nature and relevance of momentum in tectonic processes
to show that momentum is practically negligible to most geological problems. The mo-
mentum of a body I is given by the product of its mass m and its velocity v (sect. ??):

I = mv . (159)

While the velocities of plate tectonic motions are very small, the mass of plates is very
large and it is therefore not immediately obvious if momentum plays a role in the tectonic
force balance.

Momentum is a physical quantity that is preserved: During the collision of two plates
the momentum of the entire system remains constant. However, the momentum of one of
the plates may be transferred to the other. This transfer of momentum occurs by a force.
The magnitude of this force is given by the change of momentum ∆I per time ∆t that
occurs during the slowing of plate motion due to collision.

F =
∆I

∆t
. (160)

If a plate is slowed down due to collision very abruptly, then the force is large. If it slows
over a large time period, the force is small. The slowing of a plate has also the consequence
that its kinetic energy Ek decreases. Kinetic energy is given by the integrated momentum
integrated over the change in velocity:

Ek =
mv2

2
. (161)

Let us now check if momentum, kinetic energy and the forces that arise from them could
be responsible for the acceleration or slowing of plates. For this, let us hypothesize that
the slowing of a continental collision is caused by a waning momentum. Lets use the India-
Asia collision and make some very simple assumptions. The area of the Indo-Australian
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Plate is roughly A = 5 · 106 km2. If the mean plate thickness is zl = 100 km and the
mean density is ρ = 3000 kgm−3 then its mass is: m = Azlρ = 1.5 · 1021 kg. If the
relative plate velocity between India and Asia is v = 0.1my−1 ≈ 3.2 · 10−9 ms−1, then,
according to eq. 159, the momentum of the collision is: I = mv = 4.7 · 1012 kgm−1 s−1

and the kinetic energy of the Indian Plate is: Ek = 7.6 · 103 J. If we now assume that the
Indian Plate will be brought to a complete halt within one million year of the collision,
then: F = 4.7 · 1012/3.15 · 1013 ≈ 0.15 N. Distributed over almost 5000 km of collision
length this leaves only about: 3 · 10−8 Nm−1. We can infer that plates would have to
be brought to a halt within fractions of a second of a collision in order for momentum
to have any influence on the orogenic force balance. In short, momentum is negligible in
plate tectonics.

14.1.9 The Difference Between Lithostatic and Non-Lithostatic

The pressure measured by petrologists with geobarometers in metamorphic rocks is gen-
erally interpreted as the “burial pressure”, that is, the pressure is directly correlated with
the depth of the rocks at the time of metamorphism. This interpretation is based on the
assumption that rocks have negligible strength, i.e. they cannot support any differential
stress. This state of stress is called lithostatic. In this state, the lithostatic pressure is
of the same magnitude as each of the principal stresses (eq. 146). The state of stress
is isotropic. However, if we consider a more general state of stress (i.e. a material that
can support differential stresses), then we can see that only part of the pressure is caused
by depth. The magnitude of the difference σ1 − σ3 also contributes to pressure and the
orientation of σ1, σ2 and σ3 determines how pressure relates to depth. The discussion on
the magnitude of the differential stress σ1−σ3 in rocks can be summarized under the term
“tectonic overpressure” (Rutland 1965; Ernst 1971).

For some special orientations of a general stress field it is possible to divide pressure
into a lithostatic and a non lithostatic component. Such a division helps to illustrate the
different contributions to pressure and allows us to estimate the magnitude of differential
stresses under different boundary conditions. In a stress field where σ1 and σ3 are the
maximum and minimum principle stresses and are oriented horizontally and vertically,
respectively we can write:

P =
σ1 + σ3

2
= σ3 +

σ1 − σ3

2
= σlith +

σd

2
= ρgz + τ1 . (162)

There, σlith is the component of pressure caused by the weight of the overlying rock
column, and the non-lithostatic component is given by the largest principal component of
the deviatoric stress tensor. Of course, eq. 162 is only valid if σ2 = (σ1 + σ3)/2. For other
values of σ2, or for differently oriented stress fields, this simple subdivision in lithostatic
and non-lithostatic terms of pressure is not possible and non-lithostatic components of
pressure can only be calculated from the complete tensor.
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FRAGENKATALOG

Der im Folgenden aufgelistete Katalog an Prüfungsfragen enthält genau 10 Fragen pro Ein-
heit. Die Fragen wurden so ausgewählt, dass die wichtigsten Teile jeder Einheit repräsen-
tativ abgedeckt sind und kann benutzt werden um Ihr Verständnis des gesamten Lehrver-
anstaltungs Inhalts zu prüfen. Auch wenn ich Ihnen nicht versprechen kann, dass die
Prüfungsfragen zur LV GEO.916 genau den hier aufgelisteten Fragen in Zahlenwerten
und Formulierungen exakt entsprechen, so kann ich Ihnen versichern, dass Sie mit einem
Verständnis dieser Fragen perfekt abschneiden werden.

1. EINHEIT: Die Diffusionsgleichung

– 1.1: Was ist Fourier’s 1. Gesetz? (ANTWORT: Der empirische Zusammenhang zwis-
chen Wärmefluss und Temperaturgradient. Die Wärmeleitfähigkeit, k, [J/(smK)] is die
Proportionalitätskonstante).

– 1.2: (a) Wie gross ist Wärmeleitfähigkeit von Gesteinen und (b) was ist Wärmefluss?
(ANTWORT: k = 2 - 5 [J/(smK)]. Wärmefluss ist die Energie die pro Zeit durch 1 m2

fliesst. Das ist Leitfähigkeit × Temperaturgradient = [W/m2]).

– 1.3: Was ist Fouriers 2. Gesetz? (ANTWORT: Ein Energiegleichgewicht. Es beschreibt
den Zusammenhang zwischen Rate der Temperaturänderung und räumlicher Änderung
des Wärmeflusses).

– 1.4: Wie rechnet man Wärme (H) in Temperatur (T ) um? (ANTWORT: Mittels
Wärmekapazität (cp) und Dichte (ρ): T = H/(ρ× cp)).

– 1.5: Was ist Wärmekapazität? (ANTWORT: Jener physikalische Parameter, der aus-
sagt wie viele Joule gebraucht werden um ein Kilo Masse um 1 Grad zu erwärmen. Für
Steine etwa 1000 [J/(kg K)]).

– 1.6: Wie gross ist die Dichte von Gesteinen? (ANTWORT: ρ ≈ 2700 (Granit) - 3300
(Mantelmaterial bei null Grad Celsius) [kg/m3]).

– 1.7: Was ist Diffusivität? (ANTWORT: κ = k/(ρ× cp). Für Diffusion von Wärme in
Gesteinen ist das etwa: κ = 10−6 [m2/s]).

– 1.8: Die Diffusivität von Kationen in Kristallen, D, ist stark Tempartur abhängig
und folgt der Arrhenius Beziehung: D(T ) = D0e

(−Q/(RT ). Berechne die Kationen
Diffusiviät in Granat bei 100 ◦C, 300 ◦C und 500 ◦C und vergleiche diese Werte mit der
thermischen Diffusivität (κ ≈ 10−6[m2s−1]). Die Materialkonstanten für Granat sind:
Q = 239 000 [Jmol−1], D0 = 9.81 · 10−9[ m2 s−1]. Die Gas Konstante ist: R = 8.3 [J
mol−1K−1]. (ANTWORT: D(100) = 2.9 × 10−42 [m2/s]; D(300) = 1.5 × 10−30 [m2/s];
D(500) = 6.5× 10−25 [m2/s]. Diese Werte sind 19 - 36 Grössenordnungen kleiner als die
thermische Diffusivität).

– 1.9: Was besagt das Wort ”Diffusion”? (Also: beschreiben Sie die Diffusionsgleichung
inWorten). (ANTWORT: Die Rate der Temperaturänderung ist proportional zur räum-
lichen Krümmung des Temperatur Profils).

– 1.10: In welchen Bereichen der Erdwissenschaften ist die Diffusionsgleichung wichtig?
(ANTWORT: Hydrogeologie, Geomorphologie, Petrologie, Temperaturmodellierung).
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2. EINHEIT: Kontinentale Geothermen

– 2.1: (a) Wie gross ist die radioaktive Wärmeproduktion, Srad, an der Erdoberfläche
und (b) welche Elemente verursachen sie? (ANTWORT: (a) Einige Mikrowatt pro
Kubikmeter: Srad= 1 - 5 * 10−6 [W/m3]); (b) Uran, Thorium und Kalium).

– 2.2: Wie würde man erwarten, dass die radioaktiven Elemente in der Erdkruste verteilt
sind ohne etwas darüber zu wissen? (ANTWORT: Weil U und Th inkombatible Ele-
mente sind und Kalium ein wesentlicher Bestandteil von Granit ist, ist die Radioak-
tivität von fraktionierten Gesteinen (z.B. Rest- und Erstschmelzen) am höchsten. Daher
gibt es im Mantel kaum Radioaktivität. In der Kruste nimmt die Radioaktivität mit
Tiefe ab, weil Schmelzereignisse in präkambirschen Schilden diese immer wieder nach
oben fraktioniert haben).

– 2.3: (a) Was ist die messbare Evidenz dafür, dass nicht die gesamte Erdkruste (Mächtigkeit
zc) so radioaktiv ist wie die Erdoberfläche? (b) Zeige, dass im Ergebnis von (a) die
Einheiten stimmen? (ANTWORT: (a) Der radiogen verursachte Wärmefluss an der
Erdoberfläche, qrad, ergibt sich aus Wärmeproduktion mal die Mächtigkeit der radioak-
tiven Schicht. Daher: qrad = Srad ∗ zc. Bei einigen Mikrowatt pro Kubikmeter und
normaler Krustenmächtigkeiten ergibt sich daraus qrad ≈ 0.1 [W/m2], also deutlich
höher als der gemessene Wärmefluss an der Erdoberfläche). (b) Srad[W/m3] × zc [m]
= [W/m2]. Das ist die Einheit von Wärmefluss).

– 2.4: Aus welchen 2 Beiträgen setzt sich der Oberflächenwärmefluss, qs zusammen
und wie gross sind diese Beiträge etwa? (ANTWORT: radiogen verursachter und
Mantelwärmefluss: qs (40 - 60 [mW/m2]) = qrad (20 - 30 [mW/m2]) + qm (20 - 30
[mW/m2])).

– 2.5: Warum ist die Annahme einer Randbedingung an der Basis der Lithosphäre (zl)
eine (a) gute und (b) schlechte Annahme für die Berechnung von stabilen kontinentalen
Geothermen (ANTWORT: (a) Es ist eine gute Annahme weil die Lithosphäre thermisch
definiert ist und daher definitionsgemäss die Temperaturen bei z > zl durch Konvektion
vereinheitlicht werden und Wärmeleitung nicht mehr der dominierende Wärmetrans-
portmechanismus ist. (b) Es ist eine schlechte Annahme weil wir nicht sehr gut wissen
wie mächtig die Lithosphäre ist. Wir wissen viel besser über Tiefe, Wärmefluss und
Temperatur der Moho bescheid).

– 2.6: Wir haben die Diffusionsgleichung Gl.11 integriert und dabei konstante Tem-
peratur an der Basis der Lithosphäre angenommen, um die Integrationskosntanten zu
bestimmen. Eine oft bessere (weil besser bekannte) Annahme als Randbedingung ist
konstanter Mantelwämefluss an der Moho. Integriere Gl.11 mit dieser Randbedingung.
(Annahme: Die Wärmeproduktion ist konstant). (ANTWORT: k∂2T/∂z2 = −S daher:
k∂T/∂z = −Sz + C1. Daraus ergibt sich: C1 = zcS + qm. Die 2. Integration ist dann
trivial und mit T = 0 bei z = 0 ergibt sich: C2 = 0).

– 2.7: Das Diagramm in Abb. 6 zeigt Messdaten von Oberflächenwärmefluss und Wärme-
produktionsrate, ebenfalls an der Erdoberfläche gemessen. Wie kann man die Steigung
und Verschnitt der Daten mit der q-Achse in diesem Diagramm interpretieren und wie
gross sind die Werte? (ANTWORT: Zeichnung mit Beschriftung von Zahlenwerten für:
Steigung: Tiefenausdehnung der radiogenen Wärmeproduktion, Verschnitt mit der q
Achse ist der Mantelwärmefluss).
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– 2.8: Was ist die maximal zu erwartende Änderung des Oberflächenwärmeflusses qs wenn
die gesamte Lithosphäre gleichmässig: (a) aufs doppelte verdickt wird (b) auf die Hälfte
ausgedünnt wird? (Nimm an dass radioaktiver (qrad) und Mantelwärmefluss (qm) gleich
gross sind). (ANTWORT: (a) Bei der Verdickung wird der Oberflächenwärmefluss zu:
qs = 2×qrad+0.5×qm (b) Bei Ausdünnung auf 50 Prozent wird qs = 0.5×qrad+2×qm.
D.h. Wenn qrad = qm ändert sich in beiden Fällen gleich viel und nur um etwa 20
Prozent).

– 2.9: Eine radiogene Wärmequelle produziert Srad = 10 × 10−6 [W/m3]. Was ist die
Rate der Erwärmungs des Gesteins unter der Annahme normaler Dichte und Wärmeka-
pazitäten. (ANTWORT: dT/dt = S/(ρcp). Mit ρ ≈ 3000 [kg/m3] und cp ≈ 1000 [J/(kg
K)] ist das knapp 100 Grad pro Million Jahre).

– 2.10: Verwende Gl. 26 oder Gl. 27 um (a) die Temperatur an der Moho (bei z = 30
km) auszurechnen (b) um die Temperatur an der Moho in einer Lithosphäre in der
die Kruste verdoppelt ist und der Mantelteil der Lithoshpäre konstant geblieben ist
(ANTWORT: siehe Abb. 9).

3. EINHEIT: Ozeanische Geothermen

– 3.1: Was ist die ”Fehlerfunktion”? (ANTWORT: Es ist eine analytisch unlösbare
Funktion, die bei der Integration der zeitabhängigen Diffusionsproblemen oft vorkommt.
Die Fehlerfunktion von x ist bei x = 0 gleich Null und nähert sich für grosse x an 1 an.
Bei x = 1 ist die Fehlerfunktion bei etwa 0.85).

– 3.2: Skizziere die Anfangs- und Randbedingungen für die diffusive Äquilibrierung eines
unendlichen Halbraumes. (ANTWORT: siehe Skizze in Abb. 72).

Figure 72: Illustration zu Frage 3.2.
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– 3.3: Welche Randbedingungen sind eine vernünftige Annahme für die Berechnung
ozeanischer Geothermen mittels der Diffusionsgleichung? (ANTWORT: Dass die Tem-
peratur an der Oberfläche immer bei Null bleibt und in unendlicher Tiefe immer bei
Asthenosphärentemperaturen um 1200◦C bleibt).

– 3.4: Welche Anfangsbedingungen werden typischerweise zur Berechnung ozeanischer
Geothermen angenommen? (ANTWORT: Dass die Temperatur Verteilung mit Tiefe
überall konstant ist und die Temperatur der Asthenosphäre (Tl) hat).

– 3.5: Ein mittelozeanischer Rücken riftet mit u = 2 Zentimeter pro Jahr. Schätze ab wie
mächtig die ozeanische Lithosphäre x = 500 km vom Rücken ist. (ANTWORT: Bei der
Riftrate ist die ozeanische Lithoshäre 500 km vom Rücken t = x/u = 25 Millionen Jahre
alt. Mit der Beziehung: teq = l2/κ ergibt sich als Schätzung l ≈ knapp 10 Kilometer).
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– 3.6: Sie haben gerade ein 1000 km langes Profil (weg vom mittelozeanischen Rücken
x) von Wärmeflussmessungen im Atlantik gemessen und wollen Ihre Messdaten mit
einer Kurve fitten. Was für eine Funktion nimmt man am besten? (ANTWORT: Eine
Quadratwurzelfunktion, denn das einfachste Modell für die Entwicklung ozeanischer
Lithosphäre sagt vorher, dass der Wärmefluss mit dem Abstand vom mittelozeanischen
Rücken mit der Funktion

√
x abnehmen sollte).

– 3.7: Wie wurde das ”Half-space-cooling” als ein erfolgreiches Modell für das altern
ozeanischer Lithosphäre bewiesen? (ANTWORT: Durch Wärmeflussmessungen am
Ozeanboden).

– 3.8: Nenne eine ”Eselsbrücke”, die zum Umrechnen verschiedener SI Einheiten dienen
können. (ANTWORT: (a) Arbeit = Kraft × Weg; ( [J]=[N]×[m]); (b) Kraft = Masse
× Beschleunigung ([N]= [kg]×[m s−2]); (c) ”E = Mc2 ” ([J]=[kg]× [m2/s2]). (c) Druck
= Kraft/Fläche ( [Pa]=[N]/[m2] ); (d) Druck = Energie/Volumen ( [Pa] = [J]/[m3])).

– 3.9: Wieviel ist eine hfu (Heat flow Unit); 1 hfu = 10−6 [cal s−1 cm−2]; 1 [cal] = 4.18
[J]) in SI Einheiten? (ANTWORT: 1 [hfu] = 0.041 [W/m2]).

– 3.10: Zeichnen Sie ein Profil durch einen Mittelozeanischen Rücken, beschriften Sie
es mit mehreren kleinen T − z Profilen an verschiedenen Stellen und kennzeichnen Sie
(a) Wassertiefe, (b) Wärmefluss, und (c) Alter. (ANTWORT: Abb. 12 mit zusätzlich
eingezeichneter Kruste).

4. EINHEIT: Intrusionen

– 4.1: In kontaktmetamorphen Terrains würde man welche Beziehung aus metamorphem
Grad und Alter der Metamorphose erwarten? (ANTWORT: Je höher gradig, desto
früher (also älter) ist der Zeitpunkt des metamorphen Peaks).

– 4.2: Wie gross ist die Schmelzwärme von Gesteinen? (ANTWORT: Etwa 300000
[J/kg]).

– 4.3: Bei der Kristallisation eines Granitkörpers (a) wird wieviel Wärme frei? und: (b)
Der Granit kann nicht weiter abkühlen bis nicht alle Schmelze kristallisiert ist. Wie
lange dauert das? (ANTWORT: (a) L = etwa 300 kilo Joule pro Kilogramm Schmelze.
(b) Bis das Äquivalent der Schmelzwärme dem Gestein entzogen wurde. In Grad Celsius
ausgedrückt ist das bis der Granit L/cp = 300◦C weiter abgekühlt wäre).

– 4.4: Zeichne (rein qualitativ) die mögliche Temperatur-Zeit Geschichte eines Migmati-
tit Terrains bei konstantem Wärme Input. (ANTWORT: Ein Temperatur-Wärmedia-
gramm auf dem ersichtlich ist, dass die Steigung der Kurve die Einheit von Wärmeka-
pazität hat und dass die Temperatur-Zeit Kurve am Solidus isothermal gepuffert wird).

– 4.5: Benutze die Beziehung teq = L2/κ um abzuschätzen wie lange ein Granitkörper
von L=3 km Durchmesser braucht um abzukühlen. Die Schmelzwärme ist dabei zu
vernachlässigen. (ANTWORT: Etwa 300000 Jahre).

– 4.6: Zeichne Temperaturprofile zu drei charakteristischen Zeitpunkten nach der Intru-
sion, quer über einen granitischen Gang. (ANTWORT: Abb. 17).
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– 4.7: Was ist das ”Stefan Problem”? (ANTWORT: Es behandelt die diffusive Abkühlung
eines Mediums mit Phasenumwandlung bei gleichzeitiger räumlicher Verschiebung des
Modellrandes durch Freiwerden vonWärme an der Kristallisationsoberfläche. Das Prob-
lem wurde zuerst von Stefan 1891 am Beispiel von frierendem Meerwasser quantifiziert).

– 4.8: Was ist die Problematik von LPHT metamorphen Terrains? (ANTWORT: Dass
das Verhältnis aus Peak Druck und Temperatur zu klein ist, als dass diese Terrains
entlang einer monoton steigenden Geotherme gebildet wurden, aber dass die Evidenz
für Kontaktmetamorphose erzeugende Intrusiva oft fehlt).

– 4.9: Wieviel zusätzliche Joule bringt ein V=5 km3 umfassender Pluton von 700◦C in
ein 300◦C warmes Gebiet? Nehmen Sie Schätzwerte für Dichte ρ und Wärmekapazität
cp an (ANTWORT: Energie = V × ρ(cp × δT + L) = 9.45× 1018 [J]).

– 4.10: Benutze die Beziehung: T = Tb+(Ti−Tb)/2
(

erfc(z/(
√
4κt)

)

) um die Temperatur
in 100 m Entfernung vom Kontakt eines sehr grossen Granitplutons 1000 Jahre nach
dem Intrusionszeitpunkt zu berechnen. (Tb = 400◦C; Ti = 700◦C; κ = 10−6 [m2/s]).
(ANTWORT: Mit Zuhilfenahme der Abb. 11 ergibt sich: 596◦C).

5. EINHEIT: Wärmeproduktion und Advektion

– 5.1: Kernreaktionen sind die einzigen Prozesse bei denen Masse in Energie verwan-
delt wird. Wie lange kann eine 60 W Glühbirne mit der Energie brennen, die bei der
Umwandlung von 1 g Masse in Energie frei wird? (Zur Erinnerung: Energie=Masse×Licht-
geschwindigkeit2. Die Lichtgeschwindigkeit ist: ≈ 300 000 [km s−1]). (ANTWORT:
Etwa 50000 Jahre).

– 5.2: Diskutiere die geodynamische Wichtigkeit von Wärmeproduktion. (ANTWORT:
Wärme kann radioaktiv (Srad), chemisch (Schem) und durch Reibung (Smec) erzeugt
werden. Srad ist einige microwatt pro Kubikmeter an der Erdoberfläche und nimmt
nach unten schnell ab. Trotzdem verursacht Srad etwa 50% des Wärmebudgets der
Kruste. Schem ist nur für Prozesse wichtig wo Phasen umgewandelt werden, z.B. beim
Schmelzen. Dort ist es ein wichitger Pufferprozess. Smec ist schlecht erfasst, aber könnte
bei hohen Verformungsraten und Spannungen durchaus grösser sein als Srad).

– 5.3: Ein Granitkörper produziert Srad ≈ 100 Microwatts pro Kubikmeter. Schätzen
Sie ab wie heiss der Körper nach t= 105 Jahren werden kann wenn man die Ableitung
von Wärme vernachlässigt, cp=1000 [J kg−1K−1] and ρ = 2700 [kg m−3].

– 5.4: Ein Migmatit enthält 30% Schmelze die alle am Solidus entstanden ist. Das Gestein
kühlt von seiner Peak Temperatur weit über dem Schmelzpunkt mit einer konstanten
Abkühlrate von s = 100 [◦Cmy−1] ab. Bestimme wie lange das Gestein am Solidus
bleiben wird? Benutze dazu die Überlegungen von Gl.49 bis Gl.- 52 (Schmelzwärme ist:
320 000 [J kg−1], Dichte: of ρ=2700 [kgm−3] undWärmekapazität: cp=1000 [J kg−1 K−1]).
(ANTWORT: Die Zeit ergibt sich aus t = LV/(scp) = 0.1 my).

– 5.5: Ein regionalmetamorphes Ereignis erfasst die ganze Kruste von L = 30 km Dicke.
Gleichzeitig erodiert das dabei entstandene Gebirge an der Erdoberfläche und exhumiert
die metamorphen Gesteine zur Erdoberfläche. Schätze mit Hilfe der Pecletzahl (Pe =
uL/κ) ab, ob die thermische Entwicklung des Orogens nur mit der Wärmeleitungsgle-
ichung beschrieben werden könnte oder ob die Advektion von Wärme durch die Erosion
auch berücksichtigt werden müssten. Nimm an, dass die Erosionsrate folgende Werte
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hat: (a) u = 100 m my−1; (b) u = 1000 [m my−1]; (c) u = 5000 [m my−1]. Die
Diffusivität κ = 10−6[m2/s]. (ANTWORT: Für (b) ist die Pecletzahl Pe = 1. Advek-
tion und Leitung von Wärme sind beide relavant und müssen berücksichtigt werden.
In (a) ist Pe = 0.1 sodass angenommen werden kann, dass Wärmeleitung dominiert
und Advektion vernachlässigt werden kann. Für (c) ist das umgekehrt (Pe = 5, also
deutlich grösser als 1.)).

– 5.6: Zeige, dass das Produkt von Spannung und Verformungsrate die Einheiten von
Wärmeproduktion hat. (ANTWORT: Spannung ist in [Pa]; Verformungsrate in [s−1].
Daher: [Pa/s]= [N/(m2s)] = [kg/(s3m)]. Mit der Beziehung ”Energie = Masse ×
Geschwindigkeit2” ergibt sich: [kg/(s3m)]= [W/m3]).

– 5.7: Das Molvolumen von Granat is etwa 11.5 [J bar−1]. Wieviele Kubikzentimeter
sind das? (1 bar = 105 Pascal). (ANTWORT: 115 Kubikzentimeter).

– 5.8: Skizziere die Form von Isothermen in einem Profil um eine vertikale Störung deren
rechte Seite mit 1 cm pro Jahr nach oben bewegt (und oben aberodiert) wird. Der
geothermische Gradient vor der Bewegung war 20◦C/km. Benutze die Pecletzahl um
die Krümmung der Isothermen richtig zu zeichnen und beschrifte den Maßstab der
Skizze).

– 5.9: Welche Prozesse könnenWärme in der Kruste advektieren? (ANTWORT: Erosion,
Deformation, Fluide und Magma).

– 5.10: Wieviel Masse wird beim Verbrennen von 5 [kg] Holz in Energie verwandelt?
(ANTWORT: Gar nichts! (Es ist ja keine Kernreaktion). Alle 5 kg sind nachher in der
Form von CO2 und Wasser noch vorhanden. Die freiwerdende Energie ist ausschliesslich
Reaktionswärme, so wie sie auch bei metamorphen Reaktionen frei bzw. konsumiert
wird).

6. EINHEIT: Zusammenfassung und ausgewählte Probleme

– 6.1: Skizziere die Temperaturverteilung in den obersten 3 Metern einer Bodenprofils
zu 4 verschiedenen Jahreszeiten. (ANTWORT: Siehe Skizze Abb. 27).

– 6.2: Was ist eine ”analytische Lösung” einer Differentialgleichung? (ANTWORT: Die
ausintegrierte Gleichung).

– 6.3: Welche Methoden sind die bekanntesten um unlösbare Differentialgleichungen zu
verwenden? (ANTWORT: Numerische Methoden wie finite Differenzen oder finite El-
emente).

– 6.4: Fassen Sie zusammen welche Wärmetransportmechanismen in der Lithosphäre
relevant sein können? (ANTWORT: 1. Wärmeleitung (sehr langsam: t = l2/κ);
2. Wärmeproduktion S = Srad + Smech + Schem, wobei Srad auf dem Maßstab der
Kruste sehr viel ausmacht, Smech eigentlich unbekannt ist weil die Scherfestigkeiten von
Gesteinen so schlecht bekannt sind und Schem ist nur als Puffer bei der Erwärmungs-
oder Abkühlgeschichte von Migmatiten oder Intrusiva relevant. 3. Wärmeadvektion
durch Magma, Erosion, Deformation (durch Fluide ist irrelevant). Die Pecletzahl
Pe = uL/κ hilft um den Maßstab abzuschätzen).
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– 6.5: Worauf ist bei der Interpretation von Spaltspuren- oder (U-Th)/He Datierungen im
Hochgebirge zu achten und warum? (ANTWORT: Diese 2 Systems datieren 100◦C bzw.
60◦C. Diese Isothermen knnen im Hochgebirge (bei einem Relief von 2-3 km) bereits
genug in die Topografie gebogen sein, sodass Erosionsraten aus Höhe-Alter Profilen
überschätzt werden).

– 6.6: Was sind (a) ”Peclet Zahl” und (b) ”Thermische Zeitkonstanten”? (ANTWORT:
(a) Die Pecletzahl ist ein Maßder relativen Wichtigkeit von Advektion und Diffusion-
sprozessen. Sie ist durch Pe = U × L/κ gegeben. Die thermische Zeitkonstante ist ein
Maßder Dauer der diffusiven Äquilibrierung. Sie ist teq = L2/κ gegeben).

– 6.7: Skizziere einen Berg mit einem Probenahmeprofil vom Tal bis zum Gipfel und ein
Alter-Höhe Diagramm daneben in dem hypothetische Spaltspuren Alter eingetragen
sind die illustrieren warum man aus diesem Diagramm die Erosionsrate ablesen kann.
(ANTWORT: siehe Skizze in Abb. 73).

Figure 73: Illustration zu Frage 6.7.
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– 6.8: Was sind (a) Randbedingungen und (b) Anfangsbedingungen in Zusammenhang
mit der Lösung von Differentialgleichungen? (ANTWORT: Randbedingungen sind In-
formationen am räumlichen Modellrand, die notwendig snd um die Integrationskonstan-
ten zu evaluieren. Anfangsbedingungen beschreiben bei zeitabhängigen Problemen die
Ausgangssituation).

– 6.9: Skizziere ein Tiefe-Temperatur Profil im Boden aus dem ersichtlich ist warum es
in Österreich in mehr als 1 m Tiefe nie friert. (ANTWORT: Abb. 27).

– 6.10: Welche Vorteile und (b) Nachteile haben analytische Lösungen von Differential-
gleichungen gegenüber numerischen Lösungen? (ANTWORT: Analytische Lösungen
haben den Vorteil, dass sie (im Sinne guter wissenschaftlicher Methode) sehr einfach sind
und die kontrollierenden Parameter eines Prozesses klar interpretiert werden können.
Numerische Lösungen haben den Vorteil, dass Prozesse mit viel wirklichkeitsnäheren
Rand- und Anfangsbedingungen beschrieben werden können).

7. EINHEIT: Die Höhe von Gebirgen

– 7.1: Was ist Isostasie? (ANTWORT: Ein Spannungsgleichgewicht in der senkrechten
Richtung. Das Gleichgewicht der Spannungen erfolgt in der ”isostatischen Kompensa-
tionstiefe”. In dieser Tiefe sind die Gewichte alles darüber liegenden Materials gleich).

– 7.2: McKenzie hat vor etwa 40 Jahren berechnet, bei welchem Verhältnis aus Kruste
und Gesamtlithosphäre gleichmässige Dehnung keine Veränderungen in der isostatisch
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kompensierten Seehöhe der Erdoberfläche ergibt. Berechne dieses Verhältnis mit der
Gleichung H = δzc(fc − 1) − ξzl(fl − 1) (zc und zl sind die Mächtigkeiten von Kruste
und Gesamtlithosphäre, fc und fl die Verdickungsparameter, δ das Dichteverhältnis
(ρm − ρc)/ρm) und ξ = αTl/2. Die Zahlenwerte für δ und ξ sollten Sie in etwa wissen.
(ANTWORT: Für H = 0 und fc = fl ergibt die Gleichung: zc/zl = ξ/δ = 12 prozent).

– 7.3: Wie lange braucht isostatische Angleichung und warum wird isostatisches Gle-
ichgewicht nicht sofort hergestellt? (ANTWORT: Isostatisches Gleichgewicht wird auf
dem Maßstab von 104 Jahren erreicht. Es braucht so lange weil das Asthenosphärenma-
terial verdrängt bzw. nachfliessen muss. Trotzdem ist auf geologischen Zeitmaßstäben
isostatische Angleichung als sofortig zu betrachten).

– 7.4: Wie kann man nachweisen ob ein Gebirge isostatisch kompensiert ist? (ANTWORT:
Nachdem die Massen im isostatischen Gleichgewicht überall gleich sind, kann das Gle-
ichgewicht mit gravimetrischen Messungen bewiesen werden).

– 7.5: Was ist Isostasie nach Airy und nach Pratt? (ANTWORT: Nach Airy sollte jede
topografische Erhebung an der Erdoberfläche durch eine Krustenwurzel kompensiert
sein. Nach Pratt sind topografisch hohe Bereiche, Bereiche geringerer Dichte und es
gibt keine Wurzel in der Tiefe).

– 7.6: Welche Prozesse tragen zur isostatisch kompensierten Höhe eines Gebirges bei?
(ANTWORT: Die Kruste hat aufgrund ihrer relativ geringen Dichte einen positiven
Auftrieb. Der Mantelteil der Lithosphäre hat aufgrund seiner kühleren Temperatur
einen negativen Auftrieb. Die 2 Beiträge sind vergleichbar wichtig).

– 7.7: Um isostatisch kompensierte Höhen zu berechnen brauche ich Mächtigkeiten der
Kruste, der Mantellithosphäre, die Dichten, und den thermischen Ausdehnungskoef-
fizient. Wie gross sind diese Parameter und was sind ihre Einheiten? (ANTWORT:
Krustenmächtigkeit: = 3 × 104 [m]; Mantellithosphäre: = 105 [m]; Dichte Kruste:
ρc = 2700 [kg/m3]; Dichte Mantellithosphäre (bei Null Grad): ρm = 3200 [kg/m3];
thermischer Ausdehnungskoeffizient: α = 10−5 [◦C]).

– 7.8: Zeichne ein Diagramm in dem die Mächtigkeit der Kruste gegen die Mächtigkeit
der Gesamtlithosphäre aufgetragen ist, konturiere es (schematisch) für isostatisch kom-
pensierte Seehöhe und zeichne typische orogene Entwicklungspfade z.B. für die Alpen
und die Indien-Asien Kollisionszone ein. (ANTWORT: Abb. 35).

– 7.9: Die mittlere Höhe der Zentralalpen ist etwa 2000 m und die Kruste ist dort fast
60 km mächtig. Benutze die Beziehung H = δzc(fc − 1) − ξzl(fl − 1) um die iso-
statisch kompensierte Mächtigkeit der Mantellithosphäre zu berechnen. zc und zl sind
die Mächtigkeiten von Kruste und Gesamtlithosphäre (Achtung: Mantellithosphäre =
zl − zc), fc und fl die Verdickungsparameter und δ= 0,15 und ξ= 0.018 fassen die
Materialkonstanten zusammen.

– 7.10: Wenn Sie mit der Gleichung H = δzc(fc−1)−ξzl(fl−1) isostatisch kompensierte
Höhen berehchnen, was genau sind das für Höhen? (ANTWORT: Die Höhe über der
undeformierten Referenz lithosphäre).

8. EINHEIT: Die Wassertiefe der Meere

– 8.1: Wir haben den Flexurparameter α erwähnt und gesagt, dass er eine Zusammen-
fassung der Materialkontanten ist, die bei der Anwendung der Flexurgleichung auf die
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elastische Biegung ozeanischer Platten oft vorkommen. Er ist: α = (4D/(g(ρm − ρw))
0.25

.
Welche Einheit hat α und wie gross ist er etwa? (Nimm: D ≈ 1023 [Nm]; ρm = 3200
[kg m−3]; ρw = 1000 [kg m−3] und g = 10 [m s−2]).

– 8.2: Beschreibe in Worten wie Sie eine Gleichung zur Berechnung der Wassertiefe der
Ozeane als Funktion vom Mittelozeanischen Rücken aufstellen würden. (ANTWORT:
Nachdem die ozeanische Kruste gleichmässig dick und vernachlässigbar mächtig ist, ist
nur die Mantellithosphäre und Wasser zu berücksichtigen. Die Dichte der ozeanischen
Mantelltihosphäre kann mit dem half-space cooling Modell berechnet werden. Integra-
tion dieser Dichte über Tiefe und Vergleich mit dem Mittelozeanischen Rücken ergibt
die Wassertiefe. Sie ist eine Quadratwurzelfunktion vom Alter der ozeanischen Platten).

– 8.3: Welche mathematischen Funktionen beschreiben die elastisch gebogene Form von
Platten? (ANTWORT: Sinusfunktionen, die durch eine negative Exponentialfunktion
gedämpft sind).

– 8.4: Wie breit muss eine topografische Erscheinung an der Erdoberfläche (z.B. ein
Gebirge) sein damit man es vernünftigerweise als isostatisch kompensiert betrachten
kann? (ANTWORT: Nachdem die elastische Mächtigkeit der Lithosphäre etwa 40 - 80
km ist, ist die Biegung wohl auch zumindest so breit und ein Gebirge sollte so um etwa
das 3-fache breiter sein (also 150 - 250 km breit damit es auch isostatisch kompensiert
ist).

– 8.5: Die flexurelle Rigidität D ergibt sich aus: D = Eh3/(12(1 − ν2)). Bestimme
die elastische Mächtigkeit der Lithosphäre h für eine typische Rigidität von D =1024

[N/m] und diskutiere warum sie anders ist als die thermisch oder mechanisch definierte
Lithosphäre. Die Materialkonstanten sind E = 1011[Pa] und ν = 0.25. (ANTWORT:
Es ergibt sich h ≈ 50 km. Die Mächtigkeit ist deutlich geringer als nach anderen
Deformationen, weil die oberste Kruste spröd bricht und die unterste Lithosphäre ist
sehr weich. Daher ist nur der Kern der Lithosphäre elastisch).

– 8.6: Die Pazifische Platte hat eine Rigidität von D = 1024 [N/m]. Um Hawai bildet
der Tiefseeboden der Pazifik Platte einen elastischen Buckel, der etwa x=250 km
von der Inselkette entfernt liegt. Benutze diese Beobachtung und die Gleichung w =
woexp(−x/α)(cos((x/α) + sin((x/α)), um die Rigidität der Pazifik Platte zu bestim-
men. (Obwohl dies eine ausgesprochen schwere Frage ist, ist genau dieses Problem
recht berühmt aus den Anfängen der Plattentektonik und soll daher hier angeführt
werden!). (Tip: Auf dem elastischen Buckel ist die Steigung Null. D.h. es gilt:
dw/dx = 0 (ANTWORT: Eine Ableitung der Gleichung nach x ergibt: dw/dx =
−2wo/α × exp(−x/α)sin(x/α)). Dies gleich Null gesetzt ergibt: x = πα und daraus
ergibt sich der Flexurparameter sowie die Rigidität).

– 8.7: Bei der Anwendung der Flexurgleichung auf die Lithosphäre sind innere und
äussere Lasten zu berücksichtigen. Was ist damit gemeint? (ANTWORT: die äussere

Last ist die Topografie eines Gebirges das auf der Platte liegt. Innere Last ist die leichte
Krustenwurzel deren Auftrieb der äusseren Last entgegen wirkt (siehe Abb. 40).

– 8.8: Es ist allgemein bekannt, dass 90% eines Eisberges unter Wasser liegen. Benutze
diese Beobachtung und die Definition von Isostasie um die Dichte von Eis zu bestimmen.
(Die Dichte von Wasser ist ρw = 1000 [kg/m3]). (ANTWORT: Die Isostasiebeziehung
besagt, dass die integrierte Dichte überall gleich ist. Daher gilt für Eis und Wasser mit
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konstanter Dichte (nach Abb. 33): 0.1 = (ρw − ρeis)/ρw. Daraus ergibt sich die Dichte
mit ρeis = 900 kg/m3).

– 8.9: Gesteine sind angeblich recht komprimierbar (Poissons Ration zwischen ν = 0.1 -
0.3). Macht das Sinn? (Siehe auch Einheit 9). (ANTWORT: Ja! Komprimierbarkeit
ist nicht mit Elastizität oder Verformbarkeit zu verwechseln! Komprimierbar heisst,
dass Gesteine bei Druck Volumen verlieren. Das ist nur deshalb nicht so offensichtlich,
weil Gesteine sehr hoche Elastizitätsmodule haben. Daher ist der Gesamtverformung
die sie elastisch aufnehmen sehr gering (aber ein Teil derselben geht eben in Volumsver-
ringerung).

– 8.10: Nenne zwei Stellen in kontinentaler Lithosphäre wo man elastisches Verhalten
beobachten kann und illustriere mit einer Skizze die Biegung der Platte. (ANTWORT:
Vorland Becken und Great Escarpments. An beiden gibt es elastische Buckel).

9. EINHEIT: Deformationsmechanismen

– 9.1: Was ist Hooke’s Gesetz? (ANTWORT: Das lineare Elastizitätsgesetz: σ = E ×
ǫ (Spannung und Verformung sind proportional). Die Proportionalitätskonstante E
(Youngs Modul) ist für Steine etwa 1010 - 1011 Pascal).

– 9.2: Was ist der Elastizitätsmodel und was die Poissons Ratio? (ANTWORT: Der
Elastizitäts- oder Youngs Modul ist die Proportionalität zwischen Spannung und Ver-
formung in Hooke’s Gesetz. Die Poissons Ratio ist das Verhältnis aus Verkürzung in
eine Richtung und Ausdehnung in die anderen 2 Richtungen und ist somit ein Maßder
Kompressibilität von Gesteinen).

– 9.3: Was ist die Grundaussage des Mohr Coulomb Kriterions? (ANTWORT: Dass die
Bruchspannung eines spröd brechenden Mediums proportional zur Normalspannung ist.
Die Proportionalitätskonstante heisst innerer Reibungskoeffizient. Die Kohäsion muss
zu dieser Beziehung dazu addiert werden).

– 9.4: Was ist eine Newton’sche Flüssigkeit? (ANTWORT: Ein Flüssigkeit mit lin-
earer Beziehung aus deviatorischer Spannung und Verformungsrate. Die Proportion-
alitätskonstante wird als Viskosität bezeichnet).

– 9.5: Wie unterscheidet sich das duktile Verhalten von Gesteinen von einer Newton’schen
Flüssigkeit? (ANTWORT: durch eine starke Nicht-Linearität. Der Powerlaw Exponent
zwischen deviatorischer Spannung und Verformungsrate ist etwa 3. Das heisst, bei
doppelter Kraft verformt sich das Material etwa 8 mal so schnell).

– 9.6: Ein Gestein verformt sich duktil nach der Beziehung: σd = (ǫ̇/A)(1/n) × eQ/(nRT ).
Die Materialkonstanten Q,A und n wurden mit: Q = 1, 9 × 105 [J/mol] und A =
5×10−6 [MPa−3s−1] n=3 bestimmt. Mit welcher Rate wird sich das Gestein bei 500◦C
verformen wenn eine Differentialspannung von 50 MPa angelegt wird? (ANTWORT:
Mit ǫ̇ = 8, 78× 10−14 [s−1]).

– 9.7: Byerlee hat empirisch festgestellt, dass µ = 0.85 ein guter Schätzwert für den
Reibungskoeffizient auf Krustenmaßstab ist. Schätze ab wir hohe Scherspannungen
an der Moho (in 30 km Tiefe) aufgebracht werden müssen um ein Gestein spröd zu
zerbrechen. (ANTWORT: Die Moho liegt etwa 30 km tief. Die Normalspannung ist
dort: σzz = ρcgzc also etwa 8.1 kbar. Die spröde Festigkeit ist daher dort etwa 680
MPa).
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– 9.8: Sie sind am viskosen (duktilen) Verformungsverhalten von einem Staurolit- Granat-
Biotit-Muskovit Glimmerschiefer interessiert. Von welchem Gestein oder Mineral suchen
Sie sich die Mterialkonstanten dazu heraus? (ANTWORT: Das Deformationsverhalten
eines Gesteins wird von der weichesten vernetzten Phase bestimmt. In Glimmerschiefern
ist das in der Regel Quarz und daher brauche ich die Materialkonstanten von Quarz).

– 9.9: Wovon hängt das Deformationsverhalten bei (a) Sprödbruch und (b) Viskoser
Verformung ab? (ANTWORT: Spröd: abhängig vom Gesamtdruck, unabhängig vom
Material, Temperatur oder Verformungsrate. Viskos: abhängig vom Material, Temper-
atur und Verformungsrate, aber unabhängig vom Druck).

– 9.10: Bestimme die Einheiten aller Parameter in der folgenden Gleichung: σd =
(ǫ̇/A)(1/n) × eQ/(nRT ). (ANTWORT: σd= [Pa]; (ǫ̇ = [s−1]; Q= [J/mol]; R= [J/mol/K];
T= [K]; A=[(Pa/s)1/n]).

10. EINHEIT: Rheologie und Kräftegleichgewicht

– 10.1: Mit welchem (einzigen) Verformungsmechanismus beschreibt man die Rheologie
der Lithosphäre am besten? (ANTWORT: Nicht-linear viskoses Verhalten dominiert
(bis auf den spröd brechenden Teil oberhalb der brittle- duktile Transition) 90% der
Lithosphäre und dieser Mechanismus ist daher eine gute Annäherung für das Verhalten
der gesamten Lithosphäre).

– 10.2: Beschreiben Sie eine einfache Beziehung eines orogenen Kräftegleichgewichtes.
(ANTWORT: Festigkeit der Lithosphäre = Plattentektonische Antriebskraft - Horizon-
tale gravitative Kraft des Gebirges (Fl = Fd − Fb)).

– 10.3: Zeichnen Sie ein schematisches rheologisches Profil durch die Lithosphäre und
beschriften Sie eine Reihe von wichtigen Aspekten desselben. (ANTWORT: Skizze so
wie Abb. 47 - 50 mit Beschriftung von: (a) Horizontalachse: Differentialspannung (von
0 - 1 GPa); (b) Vertikalachse: Tiefe (von 0 - 150 km); (c) Brittle Ductile Transition; (d)
viskose Kurven für langsame und schnelle Verformung; (e) Sprödkurve an der Moho etwa
bei gleicher Spannung wie die viskose Kurve. (f) Fläche unter dem Profil = Festigkeit
der Lithosphäre).

– 10.4: Was bezeichnet man als ”effektive plattentektonische Antriebskraft”? (ANTWORT:
Die externe Antriebskraft minus die potentielle Energie (pro Quadratmeter) des davor
liegenden Orogens. Dieser Wert hat die Einheiten [N/m]).

– 10.5: Zeichnen Sie ein schematisches rheologisches Profil durch die ozeanische Lithosphäre
aus dem erkenntlich ist warum die ozeanische Lithosphäre höhere Differentialspannun-
gen unterstützt (also: härter ist) als kontinentale, obwohl sie dünner ist. (ANTWORT:
Vergleichsskizzen so wie Abb. 50 und Abb. 51, die zeigen, dass die Fläche unter der
Kurve in Abb. 51 grösser ist).

– 10.6: Wie gross ist die Festigkeit der Lithosphäre (fl) etwa und welche Einheit hat
sie? (ANTWORT: Bei normalen kontinentalen Verformungsraten etwa fl = 5 × 1012

[N/m]).

– 10.7: Wenn Sie nichts über die rheologische Stratifizierung der Lithosphäre wissen
würden, welche Hinweise gibt es trotzdem auf die Grössenordnung des Zahlenwertes
für die Festigkeit von Gesteinen (ANTWORT: Die Tatsache, dass das Altiplano und
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das Tibetische Plateau die limitierende Seehöhe erreicht haben zeigt, dass die mittlere
Festigkeit der Lithosphäre gross genug sein muss, um diese Plateaus aufzubauen. Aus
dem Gewicht solcher Plateaus (plus deren Krustenwurzel) ergeben sich Werte zwischen
50 - 70 MPa, gemittelt über eine 100 - 150 km mächtige Lithosphäre).

– 10.8: Die rheologischen Daten für Quarz sind Q = 1.9 × 105 [J/mol]; A = 5 × 10−6

[MPa−3 s−1] und n = 3. Jene für Olivin sind: Q = 5.2 × 105 [J/mol]; A = 7 × 104

[MPa−3 s−1] und n = 3. Berechne mit der Beziehung σd = (ǫ̇/A)1/n×exp(Q/(nRT )) die
wievielfache Differentialspannung (σd) Olivinhältige Gesteine als Quarzhältige Gesteine
bei 1000◦C aushalten. (ANTWORT: σd(olivin)/σd(quarz) = (Aq/Ao)

1/n × exp((Qo −
Qq)/(nRT )) = 73. Olivin ist also um knapp das hundertfache härter).

– 10.9: Wenn ein Gebirge hoch genug ist sodass sein gravitatives Gewicht (Fb) gleich gross
ist wie die plattentektonische Antriebskraft (Fd), dann ist die effektive Antriebskraft
gleich Null (Feff = Fd − Fb) und die Festigkeit der Lithosphäre ebenfalls Null. Was
passiert in diesem Fall wenn die Konvergenz weiter anhält? (ANTWORT: Das Gebirge
wird nicht mehr höher, aber wird beginnen in die Breite zu wachsen).

– 10.10: Zeige anhand einer schematischen Skizze eines rheologischen Profils durch die
Lithosphäre warum (und wieviel) Kontinente in Dehnung weicher sind als in Kompres-
sion? (ANTWORT: An den viskosen Kurven ändert sich nichts, aber die Sprödbruch-
kurve ist um dadurch wird die Lithosphäre in Dehnung (bei gleichbleibender Temper-
atur und Verformungsrate) insgesamt um etwa 10% weicher).

11. EINHEIT: Plattentektonische Antriebskräfte

– 11.1: Was hat potentielle Energie mit plattentektonischen Antriebskräften zu tun?
(ANTWORT: Nachdem die Lithosphäre von viskosem Verhalten dominiert wird, hat sie
im lithostatischen Zustand auch keine Festigkeit. Daher ist die seitlich ausgeübte Kraft
in jeder Tiefe gleich gross wie die Normalspannung. Die insgesamt horizontal ausgeübte
Kraft der Lithosphäre ist gleich der Summe aller Normalspannungen über Tiefe. Dieser
Wert ist ident mit der potentiellen Energie der Lithosphäre pro Quadratmeter Fläche).

– 11.2: Vom Aspekt des Spannungsansatzes, auf welche 2 fundamental verschiedene Wege
kann man Käfte in ein Orogen übertragen? (ANTWORT: Durch Scherspannung an
der Unterseite (nur relevant auf relativ kleinem Maßstab z.B. in Akkretionskeilen),
Normalspannungen (Gebirgsbildung auf Plattenmaßstab).

– 11.3: Diskutiere den Unterschied des Spannungsfeldes bei Platten Kollision (Gebrigs-
bildung) und Kontinentaler Dehnung (ANTWORT: Bei Kollision ist die grösste Haupt-
normalspannung σ1 horizontal orientiert, bei Dehnung ist σ1 vertikal orientiert. In
beiden Fällen sind jedoch alle drei Hauptnormalspannungen positiv (sie zeigen also
aufeinander zu).

– 11.4: Plattentektonische Prozesse können Subjekt von zwei mechanisch verschiedenen
Randbedinungen sein. Welchen? (ANTWORT: (a) Die orogene Entwicklung kann
durch Spannungen am Orogenrand kontrolliert werden (und die Geschwindigkeiten
ergeben sich aus den Spannungen). (b) die orogene Entwicklung hängt vonGeschwindig-

keiten der Konvergenz ab (unabhängig von den Spannungen) (Himalaya).

– 11.5: Bestimmen Sie grafisch die plattentektonische Kraft die sich aus den potentiellen
Energie Unterschieden von Säule A auf Säule B ergibt (ANTWORT: siehe Skizze in
Abb. 74).
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Figure 74: Illustration zu Frage 11.5.
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– 11.6: Zeichne, nebeneinander, zwei Skizzen für die Situation aus Abb. 33: (a) Dichte
gegen Tiefe und (b) Vertikale Normalspanung (σzz) gegen Tiefe. Achten Sie darauf, dass
die Skizzen in der gleichen Tiefen den richtigen Werten entsprechen und diskutieren Sie
welche Flächen welchen Werten entsprechen (ANTWORT: siehe Abb. 76).

Figure 75: Illustration zu Frage 11.6.
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– 11.7: Die Seehöhe eines Gebirges im isostatischen Gleichgewicht wird durch die Dichte
und Mächtigkeit der Lithosphäre bestimmt. Was ist der grundlegende Unterschied von
potentieller Energie im Vergleich zur Isostasie? In anderen Worten, welche zusätzliche
Info braucht man um die plattentektonische Antriebskraft zu bestimmen? (ANTWORT:
Für Isostasie brauche ich nur Mächtigkeiten und Dichten. Für potentielle Energie
ausserdem die Verteilung von Dichte mit Tiefe in der Lithosphäre).

– 11.8: Für eine ganz einfache, einschichtige Lithosphäre, ergibt sich die Kraft, die ein
Gebirge auf sein Vorland ausübt (pro Meter Orogenlänge) (oder auch: die potentielle
Energie pro Quadratmeter) durch: Fb = ρcgH(H/2+zc+w/2), wobei H die Seehöhe, g
die Erdbeschleunigung, w die Mächtigkeit der Krustenwurzel und zc die Mächtigkeit der
Kruste ist. Was kann man aus dieser Beziehung lernen? (ANTWORT: (a) Fb nimmt
quadratisch mit der Seehöhe des Gebirges zu. Es ist also deutlich schwerer ein Gebirge
von 3000 m auf 3001 m zu heben, als es ist von 1000 m auf 1001 zu heben. (b) Der dritte
Ausdruck dieser Gleichung ist deutlich grösser als der 1. Das heisst, die Mächtigkeit
der Wurzel bestimmt den potentiellen Energieunterschied maßgeblich).

– 11.9: Wie gross ist Ridge Push und (ANTWORT: die Ridge Push Kraft nimmt linear
mit dem Alter der ozeanischen Lithosphäre zu und ist für 100 mio J alte ozeanische
Platten etwa 3 1012 [N/m] gross).

– 11.10: Was wissen wir über ”Slab Pull”? (ANTWORT: Nicht sehr viel! Das Gewicht
ozeanischer Platten, das diese nach unten zieht ist natürlich gut berechenbar, aber der
Reibungswiderstand der Asthenosphäre lässt sich kaum abschätzen und daher ist nicht
gut bekannt ob Slab Pull deutlich grösser oder vernachlässigbar kleiner als Ridge Push
ist).
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12. EINHEIT: Dynamische Entwicklung von Gebirgen

– 12.1: Was ist die ”Thin Sheet” Annäherung? (ANTWORT: Die Thin Sheet Annäherung
wird auch als ”Plane Stress” Annäherung bezeichnet, weil in ihr die Annahme getroffen
wird, dass die Scherspannungen an der Ober- und Unterseite der Platte Null sind und
die Normalspannungen an diesen Oberflächen überall konstant (”plane”) sind. Dadurch
sind keine Verformungsraten Gradienten in senkrechter Richtung möglich. Sie bildet
die bestmögliche Annäherung plattentektonische Prozesse auf Plattenmaßstab in 2-D
zu modellieren).

– 12.2: Was bedeutet ”Plane Strain” und warum ist plane strain nicht ”Plane Stress”?
(ANTWORT: ”Plane Strain” bedeutet strikte 2-Dimensionalität, also Flächenkonstanz.
Wenn man sich Plane Strain Verformung als einen verformenden Film zwischen 2 Glas-
platten vorstellt, ist leicht ersichtlich, dass der Druck auf die Glasplatten in horizontaler
Richtung variiert).

– 12.3: Zeichnen Sie auf dem beiliegenden Profil im Becken, Vorland und Orogen Vek-
toren (also Länge und Grösse) für die Hauptnormalspannungen ein (Nehmen Sie 2-
Dimensionalität an (also: es gibt nur σ1 und σ3) und die Thin sheet Annäherung (also:
σ1 und σ3 sind entweder vertikal oder horizontal orientiert) (ANTWORT: Die horizon-
talen Spannungen sollten an allen drei Stellen gleich gross sein. Im Orogen sollte die
vertikale Spannung grösser sein, im Becken kleiner).

Figure 76: Illustration zu Frage 12.3.
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– 12.4: Was ist die Argand Zahl? (ANTWORT: Die Argandzahl ist das Verhältnis aus
vertikalen und horizontalen Spannungen bei der Orogenese. Sie ist ein Maßfür die
”Zerrinnbarkeit” eines Orogens. Für kleine Argandzahlen überwiegen die horizontalen
Spannungen und Gebirgsbildung ist duch die Randbedingungen kontrolliert. Bei grossen
Argandzahlen überwiegen die vertikalen Spannugen und ein Orogen wird etwa gleich
schnell zerfliessen wie es aufgebaut wird, d.h. es baut sich kaum Topografie auf. Die
Argandzahl kann als input Parameter für numerische Modelle verwendet werden ohne
Annahmen über Temperaturverteilung oder Rheologie treffen zu müssen).

– 12.5: Wie kann es zur Dehung während der Kontinent-Kontinent Kollision kommen?
(ANTWORT: Durch offene Ränder, (ii) Durch zusätzlichen input von potentieller En-
ergie (z.B. durch Delamination der Mantellithosphäre), (iii) durch Verringerung der
Konvergenzgeschwindigkeit).

– 12.6: Der potentielle Energie Unterscheid, der nötig ist um eine Gebirge entweder
aufs doppelte zu verbreitern oder aufs doppelte zu heben haben wir bestimmt. Er ist:
∆Ep(hoch−breit) = (ρcρm/(ρm−ρc)× glH2. Diskutiere anhand dieser Gleichung wie die
Entwicklung eines Kollisionsorogens aussehen wird. (ANTWORT: Nachdem die Breite
linear eingeht und die Höhe quadratisch ist es klar, dass ein Gebirge mit zunehmender
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Höher schwerer wachsen kann und dass die Deformation ins Vorland propagieren wird
um das Gebirge in die Breite zu wachsen).

– 12.7: Bestimme grafisch die Ridge Push Kraft anhand der hier angeführten Skizze.
Beschrifte die Achsen gut genug mit Zahlen, sodass aus Ihrer Grafik ein etwaiger Zahlen-
wert für Ridge Push abgelesen werden kann. (ANTWORT: Siehe Abb. 77).

Figure 77: Illustration zu Frage 12.7.
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– 12.8: Was ist ”Lateral Extrusion” und welche mechanischen Prozesse beinhaltet sie?
(ANTWORT: Lateral Extrusion bezeichnet die Bewegung eines Gebirges senkrecht zur
Konvergenz Richtung. Der Prozess beinhaltet gravitativen Kollaps (laterale Extension)
und ”tectonic forcing” (in Kompression). In den Ostalpen sieht man beides (wahrschein-
lich nicht genau zeitgleich): Extension entlang N-S streichenden Abschiebungen (Bren-
ner, Katschberg) und ”tectonic forcing” (konjugierte Lavanttal und Mur-Mürz Störungs
systeme).

– 12.9: Was ist mit ”effektiver Viskosität” gemeint? (ANTWORT: Viskosität in einer
Newton’schen Flüssigkeit hat die Einheiten [Pa × s]. In nicht-linearer viskoser Ver-
formung hat die Proportionalitätskonstante die Einheit [(Pa × s)n] und wird oft mit
A abgekürzt (Also: τns = Aǫ̇). Die ”effektive Viskosität” ist - in Analogie zur New-
ton’schen Viskosität - durch das Verhältnis aus deviatorischer Spannung und Verfor-
mungsrate definiert. Sie ergibt sich als: ηeff = A1/n × ǫ̇(1/n)−1).

– 12.10: Berechne wie viel potentielle Energie pro Meter Orogenlänge (∆Ep) aufge-
bracht werden muss, um ein Gebirge der Breite l= 100 km und der Höhe H = 3000 m
aufzubauen. Benutze die Gleichung: ∆Ep = ρcgHl(H/2 + zc + w/2) mit w = 30000
m und Standartwerte Ihrer Wahl für dichte, Beschleunigung und Krustenmächtigkeit.
(ANTWORT: Zahlenwerte ergeben etwa 4 ×1012 [N/m]. Das ist ein durchaus normaler
Wert für plattentektonishce Antriebskräfte. ).

13. EINHEIT: Basis Prinzipien von Spannung und Verformung

– 13.1: Was ist Druck? (ANTWORT: Die mittlere Spannung. Druck ergibt sich aus dem
Mittelwert der 3 Hauptnormalspannungen: P = (σ1 + σ2 + σ3)/3).

– 13.2: Was ist Differentialspannung? (ANTWORT: Es ist der Unterschied zwischen
grösster und kleinster Hauptnormalspannung: σd = (σ1 − σ3)).

– 13.3: (a) Was ist deviatorische Spannung und (b) warum ist sie so praktisch? (ANTWORT:
(a) Es ist die Abweichung des Spannungszustandes vom Druck. (b) Deviatorische Span-
nungen sind in Vorzeichen und Grösse equivalent zu den Beobachtungen über Verfor-
mung und Verformungsrate).
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– 13.4: Was ist die Navier Stokes Gleichung? (ANTWORT: Es ist die wichtigste Gle-
ichung der Fluid Dynamik. Sie koppelt die Gleichungen des Spannungsgleichgewichtes
mit einem viskosen Fliess Gesetz).

– 13.5: Was ist Hauptnormalspannung? (ANTWORT: Es sind die Normalspannungen in
einem Koordinatensystem, das so orientiert ist, dass alle Scherspannungen gleich Null
sind).

– 13.6: Ist den ”Schwung” von Platten, also der Impuls wichtig für Gebirgsbildung?
(ANTWORT: Impuls ergibt sich aus Masse × Geschwindigkeit. Nachdem die Masse
von Platten sehr gross ist, aber die Geschwindigkeit sehr klein ist die Wichtigkeit von
Impuls nicht von vornherein offensichtlich. Die Kraft die durch Impuls ausgelöst wird,
ist die Impulsänderung pro Zeit. Es stellt sich heraus, dass diese auf tektonischem
Maßstab vernachlässigbar kleine Kräfte bewirkt).

– 13.7: Was ist tektonischer Überdruck? (ANTWORT: Es ist jene Komponente im
Druck, die nicht durch Überlagerung verursacht wird. Er ist in der Regel von der
Größenordnung (σ1 − σ3)/2)).

– 13.8: Wie gross sind: (a) die Differentialspannung σd, (b) der Druck P ; (c) die devia-
torischen Hauptnormalspannungen τ1 und τ2 und: (d) ist der tektonische Überdruck in
einem Gestein in einem kompressiven Orogen, in dem die vertikalen Normalspannung
σ3 = 100 MPa und die horizontale Normalspannung σ1 = 300 MPa ist. (Wir nehmen
2-Dimensionalität an, also berücksichtigen kein σ2). (ANTWORT: (a) σd = σ1 − σ3 =
200 MPa; (b) P = (σ1+σ3)/2 = 200 MPa; (c) τ1 = σ1−P = + 100 MPa; τ3 = σ3−P=
- 100 MPa; (d) Überdruck = P − σ3 = 100 MPa).

– 13.9: Was ist Normalverformung (”Normal Strain”) und was ist Scherverformung
(”Shear Strain”)? (ANTWORT: Normalverformung hat die Einheiten von (Länge nach
der Verformung (l) / (Länge vor der Verformung (l0)) und ist somit einheitslos. Wir
unterscheiden ”Streckung” = l/lo und ”Elongation” = (l − lo)/lo). Scherverformung
hat die Einheiten von horizontalem Versatz pro Länge senkrecht zur Versatzrichtung,
also tanφ).

– 13.10: Was ist der Zusammenhang von Geschwindigkeiten und Verformungsraten?
(ANTWORT: Geschwindigkeiten sind in [m/s], Verformungsraten in [s−1]. Verfor-
mungsraten ergeben sich aus den räumlichen Gradienten der Geschwindigkeiten).


