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Introduction

This course is a 1 hour/week one-semester course on geodynamics of the lithosphere
taught at Innsbruck University in the winter term 2021/22. The course is compiled
and shortened from a 2 hour/week course at Graz University which, in turn, is an
extract from my textbook ”Geodynamics of the Lithosphere” published in 2007. The
content of this course can be found in a series of textbooks. For those of you who want
to understand this subject in more depth, I recommend the following three books:

– Turcotte D.L. and Schubert G. (2014): Geodynamics, 3rd ed., Cambridge Univer-
sity Press, 496 p.

– Fowler C.M.R. (1990): The Solid Earth. An Introduction to Global Geophysics.
Cambridge University Press. 472 p.

– Stüwe K. (2007): Geodynamics of the Lithosphere. Springer Verlag, Berlin Heidel-
berg, 493 p.

I hope you enjoy the course and look forward to work with you!

December 2021, Kurt Stüwe
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4 Unit 1

1 Unit: Vertical Structure of Earth

Earth can be divided into layers according to:

– different materials,

– different physical properties.

When considering the layers made of different materials, there is three: a crust,
a mantle and a core (layers above the surface of solid earth like the hydrosphere,
biosphere or atmosphere are not considered here). The crust is the uppermost layer.
In its normal state, it is between some 5 to 7 and 30 km thick, depending on whether
we deal with oceanic or continental crust. In regions of deformed continental crust –
for example underneath the Tibetan Plateau or the Alps – continental crust can get up
to 80 km thick. Chemically, the crust is highly-differentiated and very heterogeneous,
but many of its mechanical and physical properties (e. g. density, conductivity or
rheology) can be well-approximated with those of quartz. The mantle is largely made
up of olivine and – at larger depths – its high-pressure breakdown products. The
seismically clearly visible contact between crust and mantle is called the Mohorovičić-
discontinuity (short: Moho). From the Moho the mantle reaches down to a depth of
about 2 900 km. The core consists mainly of iron and nickel.

When considering the physical properties, the layered structure is quite different.
Then, the outermost layers of earth are the lithosphere and the asthenosphere. The
lithosphere is solid and acts like rock on geological time scales. Therefore its name.
It involves both a crustal and a mantle part. The asthenosphere consists of the soft
mantle that underlies the lithosphere. Some authors call the entire upper mantle
underneath the lithosphere the asthenosphere. Others use the term only for the
mantle section that lies above the point where the adiabatic melting curve comes
nearest to the temperature profile. According to Ringwood (1988) the mantle can be
divided into three zones:

1. The upper mantle, which reaches down to about 400 km and is characterized by a
seismic p-wave velocity of about 8.1 km s−1.

2. A transition zone from about 400 km to the 650 km discontinuity.

3. The lower mantle which reaches from the 650 km discontinuity to the core-mantle
boundary at 2 900 km depth.

Below that is the core. The outer core is liquid and the inner core is solid.
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Figure 1: Nomenclature of
different parts of the outer shells
of the earth

1.1 Crust and Lithosphere

The lithosphere is the outer solid layer of the earth (s. sect. 4.1). As for the
whole globe, the lithosphere can be divided according to its physical properties or
according to its chemical (material) properties. Because there is overlap between
layers distinguished on the basis of different properties it is crucial to be familiar with
the nomenclature illustrated in Fig. 1. For comparison see also the original thoughts
of Alfred Wegener illustrated in Fig. 2.

When considering its chemical properties, the lithosphere consists of a crust and
a mantle part. The crust consists of highly-differentiated partial melts from the
mantle. The mantle part of the lithosphere is largely made up of the similar material
to that of the underlying asthenospheric mantle, but it acts like a solid, because of its
lower temperature. However, we note that chemical differences between the mantle
lithosphere and the underlying asthenosphere do exist and account for example for
unusually thick, but apparently mechanically stable mantle lithosphere, underneath
southern Africa. Modern research has been able to document much detail of the
compositional variation within the uppermost mantle, both on chemical grounds (e.g.
McDonough and Rudnick 1998) and based on seismic velocities (Jordan 1981a; 1989).
Nevertheless we take in this book the simple-minded view that density variations
between mantle lithosphere and asthenosphere may be largely attributed to differences
in temperature (e.g. on p. 54).
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Figure 2: The outer shells of Earth according to Alfred Wegener and our modern under-
standing.

A schematic but characteristic thermal and density profile of the lithosphere is
shown in Fig. 3 and Fig. 4. A very large number of the geodynamic processes are a
function of the fundamental shape of the curves on this figure.

Within the crust the temperature profile is curved, because of radioactive heat
production. Within the mantle part of the lithosphere, the thermal profile is linear
(in a steady state). The base of the thermal lithosphere is defined by the point where
the temperature profile intersects the 1 200◦C or 1 300◦C isotherm (sect. 4.1). At
higher temperatures, mantle material begins to flow rapidly on geological time scales
and any temperature gradients will be eliminated by convection. Thus, temperature
and density are more or less constant below the depth zl for the next few hundrets of
kilometers. The curves of Fig. 3 and Fig. 4 will be useful help throughout this course.

1.1.1 Definition of the Lithosphere

The term “lithosphere” comes from the Greek lithos=rock and was introduced by
Suess (1885). The term was later used by Barrell (1914) and ultimately defined by
Isacks et al. (1968) as a near surface layer of strength of earth. Even today it remains
difficult to find a more precise definition than this. Most of the physical parame-
ters, for example temperature or density, change continuously underneath the Moho
and the transition from the rigid outer shell of the earth (the mechanical boundary
layer) into the more viscous hot asthenosphere (from the Greek asthenia=soft) is
also continuous. This transition zone is called thermal boundary layer) (Parsons and
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Figure 3: a Temperature b density and c failure stress of the continental lithosphere as a
function of depth. The depth of the Moho below surface is zc, that of the whole lithosphere is
zl. a The curvature of the geotherm within the continental crust is caused by radioactive heat
production. The light shaded area corresponds to the heat content of the lithosphere that
can be attributed to radioactive decay in the crust. The dark shaded region corresponds to
the heat content conducted into the lithosphere from the asthenosphere. It may be seen that
the heat content of the crust consists to roughly equal part of mantle heat and of radioactive
heat. b The slope of the density profile within the crust and within the mantle lithosphere
is a function of the thermal expansion. A comparison of the shaded areas shows that the
density deficiency in the crust (light shaded area) is comparable to the density excess in
the mantle lithosphere (dark shaded area) – both relative to the asthenosphere. Within the
asthenosphere convective flow equalizes all density and temperature heterogeneities. Both
curve are therefore vertical. c The distribution of deviatoric stresses in the lithosphere in
the cartoon shown here is known as the Brace-Goetze lithoshere after the first geologists who
suggested this model in the seventies. Detailed explanation of the curves needs to be done
elsewhere.

McKenzie 1978; McKenzie and Bickle 1988). However, even on the definition of the
term “thermal boundary layer” there is no clear consensus in the literature.

One thing can be said with certainty: the definition of the lithosphere depends
on the question that is being asked. Very generally the lithosphere may be defined
mechanically as the outer part of the earth in which stresses can be transmitted
on geological time scales (s. McKenzie 1967). According to a somewhat different
mechanical definition the thickness of continental lithosphere may be defined as the
layer that is in isostatic equilibrium with the mid-oceanic ridges (Cochran 1982). This
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Figure 4: a Temperature b density and c failure stress of the oceanic lithosphere as a
function of depth. The depth of the Moho below surface is zc, that of the whole lithosphere
is zl. a The curvature of the geotherm is caused by successice cooling over time steps t1,
t2, t3. b The slope of the density profile within the crust and within the mantle lithosphere
is a function of the thermal expansion. A comparison of the shaded areas shows that the
density deficiency in the crust (light shaded area) is comparable to the density excess in the
mantle lithosphere (dark shaded area) for the shown time step. This is about 30 my. Older
oceanic lithosphere is negatively bouyant. c The distribution of deviatoric stresses in the
lithosphere shows that the total strength of the oceanic lithosphere (shaded area) is large
than that of the continental lithoshere. although the oceanic lithosphere is thinner. This is
because the dominating olivine rheology is relevant for temparatures as low as 100 degrees
in oceans, where as olivien rheology is only relevant above about 600 degrees in continents.

is meaningful, because the mid-oceanic ridges may be interpreted as manometers of
the upper mantle (s. p. 56, Turcotte et al. 1977).

According to a thermal definition the lithosphere is the part of earth in which ther-
mal energy is largely transferred by heat conduction, in contrast to the asthenosphere,
where heat is transferred by convection (s. sect. 4.1 for more detail). In some ways
the thermal definition encompasses the mechanical definition because many of the me-
chanical properties of rocks depend on the ratio of their temperature to their melting
temperature. In stable continental lithosphere, thermal and mechanical definitions
indicate thicknesses of 100–150 km. The thickness of the crust and its content in ra-
dioactive minerals is crucial to the thickness of the lithosphere, because they strongly
influence the Moho-temperature.
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1.1.2 Types of Lithosphere

There is two fundamentally different types of lithosphere on earth: oceanic and con-

tinental lithosphere. Despite these names, the correlation of oceanic lithosphere with
the geographic area of the ocean and vice versa is only very approximate and there
are substantial parts of continental lithosphere that lie under water and vice versa.
A very rough indicator for the line separating continental from oceanic lithosphere is
about 500 m water depth.

• Oceanic lithosphere Oceanic lithosphere begins its life at the mid oceanic ridges.
There, it consists only of an about 7 km thick oceanic crust, which is made up of
crystallized partial melts from the uppermost mantle. The thickness of the mantle
part of the oceanic lithosphere is zero near the mid-oceanic ridges. With increasing
age – that is: with increasing distance from the ridge – the thickness of the mantle
part of the oceanic lithosphere increases as the asthenosphere successively freezes
to the base of the cold crust. In the oldest parts of known oceanic lithosphere the
thickness of the oceanic mantle lithosphere is almost as thick as continental mantle
lithosphere. However, oceanic lithosphere is being produced and consumed at all
times, so that there is hardly any oceanic lithosphere on earth that is much older
than about 150 my. Because of the young age (and therefore low thickness) the mean
oceanic heat flow is significantly higher than that of the continents. Although there
is practically no radiogenic heat production in oceanic crust the mean oceanic heat
flow is 101 mWm−2 (Pollack et al. 1993; Wei and Sandwell 2006).

• Continental lithosphere In contrast to the oceanic lithosphere, the total area
of continental lithosphere has remained largely constant in the entire Phanerozoic.
Thus, the present day continents consist largely of Proterozoic continental lithosphere,
which has been reworked in many places. Nevertheless there ae enough places around
the world where Archaean and Proterozoic continental crust is preserved giving us a
glimpse of tectonic processes in the Precambrian (e.g. Greenland, Canadian Shield,
East Antarctic Shield, Kongo Craton, Arunta Block, Yilgarn block and many oth-
ers). Continental crust is chemically highly-differentiated, it has a high content in
radioactive elements and in its stable state it is about 30–50 km thick. According to
thermal and mechanical definitions, the mantle part of the lithosphere is 70–100 km
thick, so that the total thickness of stable continental lithosphere is of the order of
100–150 km. However, in old shield areas this thickness can be much more, probably
due to a different chemical composition of the mantle lithosphere. The mean heat
flow of the continental lithosphere is about 65 mWm−2 (Pollack et al. 1993; Wei and
Sandwell 2006).



2 Plate Boundaries

The surface of earth can be divided into seven major lithospheric plates plus a number
of smaller plates (Fig. 5). Not all major plates correspond to the seven continents
and it is of some coincidence that the number of continents equals that of the major
plates. Most major plates consist of both continental and oceanic lithosphere. Most
geodynamically interesting processes occur along the plate boundaries. These bound-
aries can be divided according to (a) their kinematics or (b) according to whch plates
are in contact.
When choosing a division according to the types of bounding plates, we can discern:

– plate boundaries between two continental plates,

– plate boundaries between two oceanic plates,
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Figure 5: Plate tectonic division of the surface of earth. Continents are white and oceans
are shaded. The difference between continental and oceanic lithosphere is not shown. Note
that the plate boundaries coincide only in a few places with the coast lines that delineate the
continents. The seven major plates are labeled with their names. The most important minor
plates are labeled with letters. They are: a Nazca Plate; b Cocos Plate; c Philippine Plate;
d Caribbean Plate; e Scotia Plate; f Chinese Subplate; g Arabic Plate; h Juan-de-Fuca Plate
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Table 1: The twelve most important relative motions of plates (after DeMets et al.
1990). 1◦ corresponds to about 110 km

plate boundary rotation pole angular velocity

longitude latitude · 10−7o/y

Africa – Antarctica 5.6oN 39.2oW 1.3

Africa – Eurasia 21.0oN 20.6oW 1.3

Africa – North-America 78.8oN 38.3oE 2.5

Africa – South-America 62.5oN 39.4oW 3.2

Australia – Antarctica 13.2oN 38.2oE 6.8

Pacific – Antarctica 64.3oS 96.0oE 9.1

South-America – Antarctica 86.4oS 139.3oE 2.7

India – Eurasia 24.4oN 17.7oE 5.3

Eurasic – North-America 62.4oN 135.8oE 2.2

Eurasia – Pacific 61.1oN 85.8oW 9.0

Pacific – Australia 60.1oS 178.3oW 11.2

North-America – Pacific 48.7oN 78.2oW 7.8

– plate boundaries between a continental and an oceanic plate.

When choosing a division according to the kinematics, we can discern between conver-

gent, divergent and transform plate boundaries (s. Tables 2.3; 2.4). Passive margins
are formerly divergent plate boundaries between two continental plates which now
consist of a passive contact between oceanic- and continental lithosphere. They are
often listed as its own type of plate margin.

2.1 Divergent Plate Boundaries

Divergent plate margins exist only between two continental plates (e. g. central
African rift system) or between two oceanic plates (e. g. Mid-Atlantic Ridge). The
passive seams between continental and oceanic lithosphere are mechanically very
strong and it would be a great coincidence if a divergent plate margin would form
exactly along them. However, there are places on the globe where divergent plate
margins cross passive margins. The Sheba Ridge in the Gulf of Aden and the Carls-
berg Ridge in the Indian Ocean are examples. Divergent plate boundaries on the
continents are called rifts. The best know examples (in order of progressive rift de-
velopment) are the Rheingraben, the Central African rift system and the Red Sea.
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Divergent plate margins between two oceanic plates (mid-oceanic ridges) are – in most
cases – the last stage of a rift.

2.1.1 Mid ocean ridges

Oceanic lithosphere is created at the mid-ocen ridges. These ridges lie at 2500 m
water depth and can be seen as a ”hole” through the lithospheric plates where we
can see the level of the asthenosphere. 5-7 km thick oceanic crust is created there
and then stays of constant thickness with distance from the ridge. In contrast, the
mantle part of the lithosphere successively thickens with distance from the ridge. In
the course we have discussed them in detail

Figure 6: Nomenclature of some
of the most important parts of
oceanic lithosphere mid-oceanic ridge

oceanic crust

mantle lithosphere

rift valley

(with black smokers)

asthenosphere

sea mount

abyssal plane

hot spot

• Asthenospheric flow at mid-oceanic ridges In the past, ridge push has
been interpreted to be related to frictional stresses of upwelling asthenosphere that
“pushes” the ridge apart as illustrated in Fig. 7a. However, several observations speak
against this model. For example, if upwelling material causes ridges, then it would
be expected that different ridges have different elevations above the abyssal planes -
dependent on the force exerted by the upwelling materials. In contrast, practically
all mid ocean ridges lie at a constant water depth. Today we know that there are
only very few places where mid-oceanic ridges coincide with diapirically upwelling
mantle material. Rather, the asthenospheric flow at most mid-oceanic ridges is of the
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geometry shown in Fig. 7b. Among other arguments, this was recognized by McKen-
zie and Bickle (1988) using on geochemical arguments. These authors showed that
partial melting that would occur due to adiabatic decompression of upwelling melt in
a mantle plume would be enough to form a 15 km thick oceanic crust. In contrast,
normal oceanic crust is measured to be only about 5–7 km thick. This thickness can
be produced by adiabatic melting of only the upper most asthenospheric regions. As-
thenospheric flow as sketched in Fig. 7b is sufficient to produce a 5–7 km thick oceanic
crust. Thus, it is thought that the flow directions of asthenospheric convection have
little to do with the position of the mid-oceanic ridges. There are only very few places
where mid-oceanic ridges coincide with diapirically upwelling mantle material. One
of these places is Iceland.

a b

Figure 7: Cartoon showing two possible motions of the asthenosphere below mid oceanic
ridges. a Asthenospheric material wells up below the mid ocean ridge in form of a mantle

plume. During this process, adiabatic decompression of asthenosphere material will cause
massive partial melting. It is thought that this situation pertains to regions where these
melts are now present as large igneous provinces like the Karoo Basalts in southern Africa or
the Deccan Traps in India and may be Iceland. b shows the mantle motion that is thought
to be representative for most mid oceanic ridges.

2.1.2 Passive margins

When continents rift, this is preceeded by an extensional phase int he continent and
the extension of continents including basin formation is its own subject not discussed
in this course. However, it should be said that rifting is usually associated with
morethinning of the mantle part of the lithoshere than in the crust so that surface
uplift occurs. This is called rift flank uplift and is seen in the African rift, the sides of
the Rhine graben or both sides of the Red Sea. Rift flanks lead to the formation of a
highly asymmetric mountain range that may form Great Escarpments (Fig. 9). Rifting
can, however, occur asymmetrically (Fig. 8), so that one side has the preferential
thinning in the crust and the other side in the mantle part of the lithoshere. This is
the case for the rifting between Australia and New Zealand.
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Figure 8: Extension of the lithosphere by normal faulting along a low angle normal fault
that transects the entire lithosphere. The upper cartoon shows the situation at the onset of
extension, the lower cartoon after full separation of the two plates and the development of
passive continental margins. Note that at location A, extension only decreased the thickness
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ratio of crust and mantle lithosphere at these two locations
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Figure 9: (a) geometry of a passive margin. Note that in the region of highest rift flank
uplift, the mantle part of the lithosphere is more thinned than the crust. (b) Numerical
model of the flexural response to a retreating Great Escarpment.
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2.2 Convergent plate margins

Convergent pate boundaries may form between two continental plates, between two
oceanic plates or between a continental and an oceanic plate. In convergent plate
boundaries between continental and oceanic plates, the oceanic plate dives beneath
the continent, because of its higher density. This is called subduction and its surface
expression is a trench (Fig. 10). The most famous example for subduction is the
subduction of the Nazca Plate underneath the south-American continent along the
Peru-Chile Trench. Subduction leads to high pressure metamorphism in the hanging
wall of the subducted plate. This metamorphism is associated with dehydration and
partial melting of the plate of the oceanic plate in the Benioff zone.

The kinematics of subduction zones is complicated. The forces and velocities with
which subducting plates sink into the asthenosphere are comparable to the forces
exerted by mid-oceanic ridges onto the plate. Subduction zones can therefore move
backwards (towards to mid-ocean ridge) if the downward velocity of the subducting
plate is larger than the rifting rate at the ridge (e. g. South-Georgia, Scotia Plate).
They can move forward (towards the continent) if the rifting rate at the ridge is
larger than the downward velocity (e. g. Pacific Plate – Alaska). In other words, the
distance between the trench and the continent in the far field hinterland increases,
decreases or remains constant. Depending on details of the force and velocity field in
subduction zone environments, forearc- or backarc basins may develop. In some cases
of collision between oceanic and continental lithosphere, parts of the oceanic plate are
welded onto the continental plate or even thrust over it. This is called obduction.

In contrast to subduction zones – where one of the two plates usually dives un-
derneath the other – the convergence of two continental plates leads to a head-on
collision of both plates. The reason for this is because continental lithosphere is (i)
much thicker, (ii) less dense and (iii) much softer than oceanic lithosphere. This leads
to the formation of the collisional mountain ranges that form most of the topograph-
ically high mountain belts of our globe. During this head on collision the crust gets
typically pervasively deformed, while the mantle parts of the lithosphere override each
other.

When two oceanic plates converge, no collision occurs and subduction zones form,
similar to those that form when two plates of different kind collide. In contrast to
the collision between two continental plates, no collision occurs between two oceanic
plates because they are thinner, much stronger and because they are much denser and
can therefore dive easier into the upper mantle. Because little internal deformation
of the plates occurs, island arcs form that are clearly defined in space. Two beautiful
examples for this are the subduction of the Pacific Plate underneath the Philippine
Plate along the Mariana Trench or the subduction of the Pacific Plate underneath
North-America along the Aleutes.
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Figure 10: Nomenclature of important parts of subduction zones. Forearc- and backarc
basins are even more clearly developed during subduction of oceanic lithosphere underneath
another oceanic plate. Good descriptions of various phenomena on this figure can be found
for slab break off by: Blanckenburg and Davies (1995); about the mantle wedge by: Spiegel-
man and McKenzie (1987) (sect. 2.2.1); about metamorphism by: Miyashiro (1973); about
the elastic fore bulge: sect. 8.1

.

2.2.1 Subduction Zones

The description of the kinematics, thermal evolution and dynamics of subduction
zones is a fundamentally two-dimensional problem. It is the first problem in this
book for which we require more than one spatial coordinate to characterize the essence
of the problem (Fig. 11). Many problems related to subduction zones concern the
accretionary wedge that forms near the surface between the surface of the subducting
slab and the upper plate.

• Isotherms in Subduction Zones Fig. 11 shows, schematically, the shape of
isotherms in subduction zones. In the subducting slab, the isotherms will be bent
and subducted with the slab. The further they are subducted, the more they merge
to the center of the slab as both surfaces of the subducting slab equilibrate with the
surrounding mantle temperatures. A thermal steady state will be reached when the
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curvature of the isotherms is large enough so that the rate of thermal equilibration is
balanced by the subducting velocity (s. Fig. 15; s. Molnar and England 1995). In this
stage, diffusion (which leads to the decay of the high curvature of the temperature
profile in the tip of the subducting slab) will be balanced by advection (which moves
the isotherms to larger depths). The time that is needed by subduction zones to reach
this thermal steady state depends on the thickness of the plate and on the subduction
rate. It can be estimated with the Peclet number.

At a temperature of about 1 600 ◦C, which is in about 400 km depth, olivine reacts
to form spinel. The depth of this phase transition is called the Clapeyron-Curve. This
reaction is exothermic with about 1.7 ·105 J kg−1. Thus, the isotherms in this depth
have a kink. The positive slope of the Clapeyron curve in P -T -space causes that the
Clapeyron curve is somewhat higher within the subducting slab than it is outside.

Fig. 11 shows schematically that the isotherms within the upper plate are closer to
the surface near the subduction zone than they are in the far field. This is because
of the dehydration of the subducting plate and the consequential rise of partial melts
and other hot fluids. This leads typically to high temperature metamorphism in the
rocks of the upper plate and ultimately to the development of magmatic arcs (see
next section). This is in contrast to the very low temperatures that occur in the
subducting plate up to very large depths. This coupled occurrence of low-pressure -
high-temperature and high-pressure - low-temperature metamorphism was recognized
by Miyashiro (1973) as one of the characteristic features of metamorphic terrains in
subduction zone environments. He called this a paired metamorphic belt.

1600 °C

Figure 11: Schematic illustration of the temperature distribution in subduction zones. the
subducted lithosphere is shaded light, the upper plate dark. The thick dark line that follows
the 1 600 ◦C-isotherm outside the subduction zone is the Clapeyron-curve. It marks the
olivine-spinel phase transition
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• Island Arcs and Subduction Zones An interesting observation in the upper
plate of subduction zones is that there is volcanic arcs that always form a narrow line
that is exactly where the seismically active surface between the subducting slab and
the upper plate is about 150 km deep (Isacks and Barazangi 1977). In subduction
zones that have a dip of 45◦ this implies a horizontal distance of the arc from the
trench of 100–150 km. If the subduction angle is steeper, then this distance is shorter
and vice versa. This observation is true for the distance of the Aleute-volcanoes
to the Aleute Trench, for the distance of the Indonesian volcanoes from the Java
Trench and many other volcanic arcs around the globe. This observation is not
trivial to explain. The volcanics that erupt from these volcanoes are derived from
partial melts in the mantle wedge that melted during fluid infiltration of fluids that
were derived by dehydration of sediments on the surface of the subducting slab in the
Benioff-zone. This zone stretches for several hundreds of kilometers along the surface
of the subducting slab and is definitely much wider than the width of the volcanic
arcs on the surface. Some authors have suggested that there are important pressure
sensitive dehydration reactions that occur in exactly 150 km depth, but there is little
petrological evidence for this.

An alternative explanation was suggested by Spiegelman and McKenzie (1987)
(Fig. 12). Their model describes the motion of partial melts through the mantle

subducting

plate

upper plate

flow lines of
mantle convection

partial melts

Figure 12: The motion of melts in and above the Benioff zone according to Spiegelman and
McKenzie (1987). The dashed lines show the convective motion in the asthenosphere, the
continuous lines are the motion of the partial melts. The enlarged sections show how the
velocity field of the partial melts is given by the sum of the upward velocity of the melt and
the motion in the mantle wedge
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Figure 13: Cartoon illustrating the fact that subduction zones may be convergent or diver-
gent, depending on the age of the oceanic lithosphere and the relative magnitude of ridge
push and slab pull.

wedge as the sum of two vector fields:

1. The motion of the asthenosphere in the mantle wedge. This motion follows the
wedge and is illustrated in Fig. 12 by the dashed lines.

2. The motion of the partial melts. Partial melt is produced continuously along the
surface of the subducting plate and moves vertically upwards.

The sum of the two velocity fields results in curved paths that converge at the tip of
the mantle wedge (Fig. 12). This elegant model is a beautiful example for a successful
model description of fluid flow in deforming rocks.
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3 Unit: The Diffusion Equation

The heat conduction equation - more commonly known as the diffusion equation -
is fundamental for the understanding of the transport of heat in the lithosphere. It
turns out that the very same equation cannot only be applied to the transport of
thermal energy, but also to the diffusion of mass. It finds therefore application in
many other fields, for example geomorphology, metamorphic petrology or hydrology.
Thus, the diffusion equation is the first equation in this course that we will discuss in
some detail. The fact that it is a second order partial differential equation should not
scare us off. We will show that it is possible to understand it quite intuitively. The
equation is a combination of two fundamental laws of heat conduction:

3.1 Fourier’s Law of Heat Conduction

Fourier’s 1. law is the basic law underlying the diffusion equation. This law states
that the flow of heat q is directly proportional to the temperature gradient (Fourier
1816). This statement can easily be formulated in an equation:

q = −k
dT

dz
. (1)

In this equation q is short for heat flow, T stands for temperature and z for a spa-
tial coordinate, for example depth in the crust. The ratio dT/dz is the change of
temperature in direction z. We call this ratio the temperature gradient. k is the
proportionality constant between the gradient and the flow of heat. In order to un-
derstand this law better (and understand the units of k), let us consider a more
familiar analogue: the flow of water in a river. The same law applies. In a river the
flow of water can be described by the volume of water passing per unit of time and per
area of cross section of the river (in SI-units: m3 s−1 m−2 =ms−1). This is called the
volumetric flow. When normalized only to the width of the river and not to the cross
sectional area of the river, the volumetric flow has the units of m2 s−1 . In contrast,
the flow of mass has the units kg s−1 m−2. Fourier’s law – applied to our example of
water flow – states that the flow of water is proportional to the topographic gradient
of the river. This corresponds well to our observations in nature: The steeper a river
bed, the faster the flow of water in the river (per square meter of cross sectional area).
Fourier’s law seems to be a good model description for this observation. This simple
example also explains why there is a negative sign in eq. 1. The flow is against the
gradient: it is positive in the downwards direction of the gradient.

In the theory of heat conduction, the flow of heat has obviously not the units of vol-
ume per time and area, but energy per time and area. (in SI units: J s−1 m−2 =Wm−2).
The thermal gradient now replaces the topographic gradient of the river. Because of
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historical reasons heat flow is sometimes given in heat flow units, or hfu. One hfu
corresponds to 10−6 cal s−1 cm−2 and can easily be converted into Wm−2. The units
of the proportionality constant k, in eq. 1, follows now easily from the units of the
other components of the equation: Because temperature has the units of K (or ◦C)
and z has the unit m, k must have the units J s−1 m−1 K−1 so that the equation is
consistent in its units. The constant k is called thermal conductivity. We can now
try to read eq. 1. We can see that the flow of heat trends to zero if the conductivity
is very low, regardless of the thermal gradient. Correspondingly, if the conductivity
is very large, the flow of heat becomes large, even if the thermal gradient is very low.
The equation may therefore be understood quite intuitively.

Would the thermal gradient be constant everywhere, we could write it as ∆T/∆z.
However, in geological problems this gradient is never constant. Thus, we use the
derivative dT/dz, which states that we want to be careful and consider our thermal
gradient only to be constant within each infinitely small section of the thermal profile.
If the gradient changes along the z direction, then eq. 1 states that the heat flow must
also change.

3.2 Energy Balance

The second part of the diffusion equation (often called Fourier’s 2. law) describes an
energy balance. This energy balance relates heat and temperature and the change of
heat flow with change in temperature. This relationship may be established indepen-
dently from eq. 1 and may be written as:

∂T

∂t
∝ −∂q

∂z
. (2)

This equation states that the rate of temperature change of a rock must be propor-
tional to the rate with which its heat content changes (∝ is the symbol for “propor-
tional to”). The rate with which the heat content of a rock changes (∂q/∂z) is given
by the difference between the flow of heat into the rock and the flow of heat out of

the rock (Fig. 14). If the heat flow into the cube of Fig. 14 is larger than the flow
of heat out of it, then the heat content of the cube will rise and its temperature will
increase. If the heat flow into the volume is just as large as that that flows out, the
temperature will remain constant. If more heat flows out of the cube than into it,
then its temperature will decrease.

In the last sentences we have begun mixing the terms “temperature” and “heat”.
However, we have to remain careful no to confuse them as the rate of temperature
change is not the same as the rate of heat content change. They relate by:

H = Tρcp (3)
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Figure 14: The flow of heat in a unity volume
of rock. The heat production inside this vol-
ume S, is not considered until we discuss real
continental geotherms.

qout

qin

S

dy
dx

dz

where H is the volumetric heat content in J m−3. The rate, with which the tem-
perature will change for a given change in heat content depends on another material
specific proportionality constant. This is the specific heat capacity cp. The specific
heat capacity or short “specific heat” has the units of J kg−1 K−1 and defines how
many Joules are required to heat the mass of one kg of rock by one degree Kelvin.
The most common abbreviation for specific heat is c. The subscript p symbolizes the
condition that the specific heat is measured at constant pressure. If the specific heat
of a rock is large, we need many Joules to heat the rock and even a rapid increase
of its heat content will lead to slow temperature increase and vice versa. Specific
heat is formulated in terms of the mass that is heated. Considering that the energy
balance in eq. 2 is formulated in terms of the spatial coordinate z, and heat capacity
is formulated in terms of mass, we need to multiply cp with the density ρ, so that
the relationship between the spatial change of heat flow and the temporal change of
temperature is consistent with the units. We can write the proportionality of eq. 2 as:

ρcp
∂T

∂t
= −∂q

∂z
. (4)

It should now be straight forward to understand eq. 4 intuitively using Fig. 14. The
negative sign arises because the temperature increase when ∂q = qout−qin is negative,
that is, more heat flows into the rock volume than out of it. You may have noticed
that the step from eq. 2 to eq. 4 was accompanied by the change from total- to partial
differentials. This was necessary, because different parts of this equation are now
differentiated with respect to different parameters.
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3.3 The Diffusion Equation

If we substitute Fourier’s law of heat conduction (eq. 1) into the thermal energy
balance of eq. 4, we arrive at:

ρcp
∂T

∂t
=

∂
(

k ∂T
∂z

)

∂z
. (5)

Eq. 5 is the general form of the one-dimensional diffusion or heat conduction equation.
If k is independent of z (e. g. if we consider heat conduction in an area without
lithological contrasts), it is possible to simplify eq. 5 significantly. k can then be
taken out of the differential and we can write:

ρcp
∂T

∂t
= k

∂∂T

∂z∂z
or :

∂T

∂t
= κ

∂2T

∂z2
. (6)

The constants k, ρ and cp are now summarized to κ = k/(ρcp). κ is called thermal
diffusivity. Eq. 6 can also be understood intuitively, without following the detailed
derivation given above. Eq. 6 may be formulated in words as:

– The rate of temperature change is proportional to the spatial curvature of the

temperature profile.

If you do not understand the relationship between this sentence and eq. 6, then
remember that the first differential of a function describes its slope (or: “gradient”,
or: “rate”) and the second its curvature.

Figure 15 illustrates this graphically. In our daily lives we encounter many exam-
ples that are described by this equation. Think for example that a piece of toast cools

Figure 15: The thermal equilibration of a ran-
dom temperature profile. The temperature pro-
file is drawn at two different time steps t0 and
t1. Note that the largest change in tempera-
ture between the two time steps has occurred in
those places of the profile where the curvature
of the profile is the largest (s. eq. 4). Where the
curvature of the profile is zero (at the inflection
points) the temperature does not change at all.

T

z

t0

t1
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much quicker on its corners than along the edges or in its middle. This is because
the spatial curvature of the isotherms in the toast is the largest at the corners! The
same is true for the rapid cooling of the tip of a needle, the rapid erosion of ragged
mountain tops and countless other examples in nature, all the way down to the rapid
chemical equilibration of fine grained rocks in comparison with coarse grained rocks.

If we want to use eq. 6 we must solve it. For this we need boundary- and initial
conditions. We also need some mathematical knowledge so that we can integrate this
equation. Some of this will be done in the next units.

• The magnitude of κ A quantitative application of eq. 6 requires the knowl-
edge of κ and therefore the knowledge of k, ρ and cp. The specific heat of rocks
is about cp =1000 – 1 200 J kg−1 K−1 (Oxburgh 1980). For most rocks cp does
not vary by more than 20% around this value. Thus, the nice and even value of
cp =1000 J kg−1 K−1 is a sound assumption that can be used for many thermal prob-
lems. The density of many crustal rocks is of the order of 2 750 kgm−3 and varies
also not all that much around this value. However, thermal conductivity, varies by
the factor 2 or 3 between different rocks types (Table 2). Fortunately, it is between 2
and 3 J s−1 m−1 K−1 for many rock types. For k=2.75 J s−1 m−1 K−1 and the values
for specific heat and density from above the diffusivity is: κ = 10−6 m2 s−1. Because
this value is easy to remember it is commonly used in the literature. Note, however,
that κ may also be twice- or half as large if the thermal conductivity of rocks is twice
or half as large.

Table 2: Thermal conductivities
and heat capacities of some rocks
and common materials. k is given
in J s−1 m−1K−1 and cp in J
kg−1K−1. The change of ther-
mal conductivity as a function of
pressure and temperature are neg-
ligible at geologically relevant tem-
peratures in the crust (Cull 1976;
Schatz and Simmons 1972).

rock type k cp

sandstone 1.5-4.2 920

gneiss 2.1-4.2 800

amphibolite 2.5-3.8 840

granite 2.4-3.8 790

ice 2.2 1 800

water 0.58 4 200

salt 5.4-7.2 880

iron 73 460
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4 Unit: Stable Continental Geotherms

Three fundamental processes create and redistribute heat in the continental litho-
sphere: conduction, advection and production. If we add heat advection and heat pro-
duction terms to the diffusion equation discussed above, then a full one-dimensional
description of the thermal energy balance for the lithosphere has the form:

∂T

∂t
=

(

k

ρcp

)

∂2T

∂z2
+ u

∂T

∂z
+

(

S

ρcp

)

, (7)

where the diffusivity is the ratio of conductivity and density × heat capacity: κ =
k/ρcp. The central term on the right hand side of this equation describes advection
(at the rate u) and advection may be due to transport of mass by erosion, deforma-

tion, magma or fluid and we will discuss some of these later in this course. In the
most right term on the right side of the equation above, the heat production S may
have mechanical, chemical and radioactive contributions. In this section we learn to
describe aspects of the thermal structure of the continental lithosphere.

4.1 Thermal Definition of the Lithosphere

The lithosphere may be defined thermally or mechanically. According to the thermal
definition, the lithosphere is the outer shell of Earth, in which heat is transported
primarily by conduction. In contrast, in the asthenosphere, heat is transported pri-
marily by convection. Thus, the lithosphere itself is nothing but a thermal boundary

layer of Earth. This boundary layer looses heat at all times through the Earth’s sur-
face into the atmosphere and further – by radiation – into space. The average heat
flow through the surface of the continents is 0.065 Wm−2. The total surface area of
the continents is about Ac = 2 ·108 km2. Thus, the total heat loss of earth from the
continents is 1.3 ·1013 J s−1. This heat loss is balanced by radioactive heat production
within the lithosphere and by heat flow into the lithosphere from the asthenosphere,
so that this thermal boundary layer has a largely constant temperature profile, if it
is not disturbed by orogenesis. Thermally stabilized lithosphere has a thickness be-
tween 100 and 200 km (Pollack and Chapman 1977). In this section we calculate the
quantitative shape of stable continental geotherms. That is, geotherms in which the
temperature does not change anymore as is the case in most continental shields. This
is in contrast to transient geotherms where the temperature changes because it is still
equilibrating. This is the case in oceanic lithosphere and in most active orogens.

4.2 Stable Geotherms: The Relevant Equation

For the stable or steady state case, the heat conduction equation (eq. 6) or the full
thermal energy balance (eq. 7) can be simplified enough so that it is possible to
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find simple analytical solutions that provide useful tools to understand the thermal
structure of the lithosphere, even without a lot of mathematical knowledge. This is
therefore a good example to familiarize ourselves with the involved thought process.
Neglecting advection (because we deal with stable geotherms) eq.7 simplifies to:

∂T

∂t
=

(

k

ρcp

)

∂2T

∂z2
+

S

ρcp
. (8)

We need the heat production term to account for radioactivity, which is of substantial
importance to stable geotherms. For steady state geotherms, there is no change of the
temperature with time. This means:

∂T

∂t
= 0 .

Eq. 8 simplifies to:

(

k

ρcp

)

d2T

dz2
+

S

ρcp
= 0 . (9)

Note that eq. 9 is no partial differential equation anymore. By canceling out of the
constants we get:

k
d2T

dz2
= −S . (10)

The integration of this equation forms the basis for all calculations of stable geotherms.

4.3 The Contribution of Radioactivity to Stable Geotherms

The radioactive heat production rate of rocks is of the order of some microwatts
per cubic meter. A typical value measured from samples at the Earth’s surface is:
S = 2−5µWm−3 ≡ 2−5 ·10−6 Wm−3. The contribution of this value to the surface
heat flow is simply the heat production times its depth extent. For example, if the
heat production were constant in the entire crust of 30 km thickness (zc = 30 km)
then the surface heat flow caused by radioactivity is:

q = qs = S · zc = 0.03Wm−2 . (11)

This can be converted into a temperature gradient using eq. 1 where we have seen that
the thermal gradient has the units of heat flow divided by the thermal conductivity.
If the thermal conductivity is k = 3 Wm−1 K−1, then the assumptions from above
indicate: dT/dz= q/k = 0.05 ◦Cm−1 =50 ◦Ckm−1. This geothermal gradient of
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Figure 16: Measured data of
surface heat flow qs and surface
heat production S0 in the
eastern US. The best line that
fits the data is described by the
equation qs = 0.035 + 7 413S0.
Accordingly, the thickness of the
layer that produces heat at a
rate S is 7 413 m thick and the
contribution of mantle heat flow
to the total heat flow is
0.035 Wm−2 (after Roy et al.
1968).
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50 ◦C per kilometer is only due to the contribution of radioactivity. The mantle heat
flow would have to be added to this. Since the resulting thermal gradient would be
much higher than just about all thermal gradients measured on earth, we can conclude
that the radioactivity of rocks measured at the Earth’s surface must be higher than
that of the rest of the crust.

4.3.1 The Distribution of Heat Production

The considerations above have shown that the radioactive heat production of the
crust is unlikely to be that of the surface in the entire crust. Various studies have
therefore explored the vertical distribution of heat producing elements (e.g. Cermak
and Rybach 1989; Pinet and Jaupart 1987; Pribnow and Hurter 1998; Heier and
Brown 1978). The most simple model for a heat source distribution is that the heat
production is constant to the depth zrad and zero below that. This model depth, to
which the crust produces radioactive heat at the same rate as on the surface, has been
elegantly determined using the relationship of two independent sets of data that can
be measured at the surface: The surface heat flow and the heat production rate at
the surface, S0. Roy et al. (1968) explored this relationship in the eastern US and its
significance was described by Lachenbruch (1968; 1970; 1971). They found a roughly
linear relationship between these two parameters (Fig. 16). The straight line that fits
these data has the form:

qs = qm + qrad = qm + zradS0 . (12)
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In this equation, qs is the surface heat flow, qm is the mantle heat flow, qrad the
radiogenically produced heat flow and zrad is the thickness of a hypothetical layer in
which radioactive heat is produced at the same rate as on the surface. qm can be
measured from the intersection of the line with the heat flow axis and the value of zrad
is given by its slope. The data of Roy et al. (1968) show that zrad is about 7 km in the
eastern US. Similar considerations in other areas indicate thicknesses of 10–15 km.
Of course, the crust does not produce heat constantly in this layer and no heat at
all below it, but the relationship is useful to estimate the total heat production in
the crust. This is given by the product zradS0. This product corresponds to the area
underneath the different model curves in Fig. 17.

In order to obtain a continuous function for the rate of heat production with depth,
the most elegant assumption is the assumption that there is a continuous exponential
drop off in radioactive heat production with depth (model c in Fig. 17). This model
has the great advantage that there is no discontinuity in the heat production in the
crust at zrad and we do therefore not need several equations to describe a single
geotherm. We assume that:

S(z) = S0e
(− z

hr
) . (13)

The variable hr is called the characteristic drop off or skin depth of heat production.
According to eq. 13, the heat production at depth z = hr is only the 1/e part of the
heat production at the surface S0. Our new starting equation to calculate a geotherm
is therefore:

k
d2T

dz2
= −S0e

(− z
hr
) . (14)

Before we use this equation, we make some further qualitative considerations of the
behaviour of surface heat flow during lithospheric thickening or thinning.

• Heat flow relationships The relationship between surface heat flow, mantle
heat flow and radioactive heat production can be illustrated clearly by interpreting
the surface heat flow qs as the sum of the mantle heat flow qm and the heat flow
caused by radiogenic heat production qrad:

qs = qm + qrad . (15)

In this equation, the radiogenic heat flow is given by: qrad = Sradzrad, as we explained
when we discussed Fig. 16 (see also eq. 12). England and Thompson (1984) assumed
that the radiogenically caused heat flow is comparable to the mantle heat flow (qrad ≈
qm) and that the mantle heat flow remains unchanged, regardless of the thickness of
the crust.
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Figure 17: Four simple models describing the dis-
tribution of heat production with depth in the crust
(s. Haack 1983). The total heat production of the crust
is given by the area underneath the model curves. It
is the same for all four models and is shaded for model
c. a Constant concentration in the entire crust and no
heat production in the mantle. b Constant concentra-
tion in the upper crust in a layer with the thickness zrad
and no heat production below that. c Exponential drop
off of the heat production with depth. d Heat produc-
tion peaking in the middle crust.
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Thickening of the crust without thickening of the mantle part of the lithosphere
doubles the radiogenic heat flow (because zrad is doubled) but does nothing to the
mantle heat flow. We can write:

qs = qm + 2qrad . (16)

Thus, the surface heat flow in thermal equilibrium after thickening is expected to be
of the order of 1.5 times as high as before if qrad = qm (Eq. 15).

However, if the mantle part of the lithosphere thickens together with the crust
(homogeneous lithospheric thickening), then this halves the heat flow through the
Moho (as the mantle lithosphere is thermally defined). We can then write:

qs =
qm
2

+ 2qrad . (17)

Thus, if qrad = qm and the entire lithosphere thickens to double thickness, the surface
heat flow in thermal equilibrium and after thickening would be only 1.25 times as
large as the value given by Eq. 15. If qrad = qm/2, then thickening or thinning of the
lithosphere as a whole does not change the surface heat flow at all.

4.4 Realistic Continental Geotherms

If we define the lithosphere thermally, we implicitly state that we know the tempera-
ture at its base. An obvious choice for a lower boundary condition may therefore be:
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T = Tl at the depth z = zl. This choice allows us to describe temperatures in the
entire lithosphere.

4.4.1 Constant Heat Production

In a model where we assume constant heat production rate in the crust and no heat
production in the mantle part of the lithosphere, density and heat production are
discontinuous at the Moho. This complicates the integration of eq. 10 dramatically.
We will not present the equations here and refer the interested reader to the original
works of Sandiford and Powell (1990) or Zhou and Sandiford (1992). However, for
comparison with the thermal model of England and Thompson (1984) we show an
example of a geotherm calculated with these assumptions as curve a in Fig. 18. We see
that this model results in unrealistically high temperatures if we assume the surface
heat production rate to be representative for the whole crust.

Figure 18: Examples of continental
geotherms calculated with a lower
boundary condition of a fixed
temperature at the base of the
lithosphere. Geotherm a was calculated
assuming constant heat production in
the crust and no heat production in the
mantle lithosphere. Geotherm b was
calculated for a continuous,
exponentially decreasing heat
production using eq. 21. The
temperature Tl is assumed to be
1 280 ◦C.
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4.4.2 Exponential Heat Production

If we assume a continuous heat production in the whole lithosphere that decreases
exponentially with depth, then we can derive from eq. 14 an elegant and simple
description of stable continental geotherms. After two integrations we get:

kT = −h2
rS0e

(− z
hr
) + C1z + C2 . (18)
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Both constants of integration can only be evaluated after this second integration.
The second integration constant C2 is fairly easy to determine if we assume again
that T = 0 at the surface where z = 0. At z = 0 the exponential term in eq. 18 goes
to 1 so that C2 must be:

C2 = h2
rS0 . (19)

The lower boundary condition of T = Tl at the depth z = zl can be evaluated by
rearranging eq. 18:

C1 =
kTl

zl
+

h2
rS0e

(− z
l

hr
)

zl
− C2

zl
. (20)

After inserting both constants into eq. 18 we get:

T =
zTl

zl
+

h2
rS0

k

(

(

1− e(−
z
hr
)
)

−
(

1− e(−
z
l

hr
)
) z

zl

)

. (21)

Curve b in Fig. 18 is an example of a geotherm calculated with this relationship.
Eq. 21 provides a realistic and useful description of stable continental geotherms and
has been presented and used by many authors.

4.4.3 More General Formulations

In order to use eq. 21 more efficiently, it is useful to introduce two new parameters:
the vertical thickening (or thinning) strain of the crust fc and that of the lithosphere
fl. A value of fc =2 means that the crust is twice as thick as in the reference state.
Using these parameters, eq. 21 can be generalized. All we need to do is multiply the
reference crustal and lithospheric thicknesses zc and zl with their respective thickening
strains. We get:

T =
zTl

flzl
+

f2
c h

2
rS0

k

(

(

1− e(−
z

fchr
)
)

−
(

1− e

(

−
z
l
f
l

fchr

)

)

z

flzl

)

. (22)

This equation can be used to calculate the equilibrium temperatures at any depth for
any thickness ratio of crust and mantle part of the lithosphere.
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Figure 19: Moho-temperatures
of continental lithosphere for
different crustal thickening
strains (expressed by fc) and for
different total thickening strains
of the lithosphere (expressed
by fl). The diagram was
calculated with eq. 22 assuming
z = zc. The assumption of the
parameters are the same as in
Fig. 18.
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5 Unit: Heat in Oceanic Lithosphere

Oceanic lithosphere contains practically no radioactive elements. Thus, one could
think that it is simple to describe stable oceanic geotherms. However, oceanic litho-
sphere is rarely old enough to be thermally stabilised. Geotherms in oceanic litho-
sphere are transient. The oldest oceanic lithosphere is about 150 my old (Fig. 20).
However, we will soon show that the time for thermal equilibration of the lithosphere
is of the order of 150 my or more! We can conclude that oceanic lithosphere is not

thermally stabilized. As such, we must solve the time dependent diffusion equation
(eq. 6). This is by far not as trivial as the simple integrations we have done for stable
(time independent) geotherms in the last unit and we need to make a little excursion
into the dealing with time dependent problems.

Figure 20: The age of the ocean floor (Müller et al. 1997). Shading intervals are every
10 my from 0 (white) to 160 my (black). Ocean floor older than 160 my is black. Areas
with no data ar white. These regions are both on continental and on oceanic lithosphere.
Landmasses are grey. Oldest known parts of oceanic lithosphere are around 180 my in the
western Pacific just east of the Mariana Trench, between Madagascar and Africa and in the
westernmost Atlantic just east of the US. Compare this map also with a topography of the
ocean floor and note the similarities.
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5.1 Handling Time Dependent Problems

If we want to use eq. 6 to describe a time dependent conduction problem, we must
solve it for a given set of boundary- and initial conditions. If we try this, we would
quickly realize that this is only possible for a very few boundary- and initial condi-
tions. Periodic problems are some of those for which there are “real” solutions of
this equation (see unit 6). For most problems there are simply no solutions of eq. 6
possible. For example, for many geological problems we will see that it is useful to
assume that the boundary conditions lie at infinity (at distances that are far away
compared to the scale of the problem). In all such problems, the results of integrating
eq. 6 will contain a term of the form:

2√
π

∫ n

0

e−n2

dn = erf (n) (23)

This integral cannot be solved. However, because it occurs so often in solutions of the
heat flow equation, it has its own name: the error function. The values of the error
function for different values of n have been determined numerically and can be looked
up on tables, or it can be calculated with some numerical approximation. Fig. 21
shows the shape of the error function. In many solutions of eq. 6 the variable n from
eq. 23 has the form n = z/

√
4κt. There, time t, and distance z are inside the error

function and they are in a quadratic relationship to each other. Most solutions that
we will use for the description of contact metamorphism contain error functions of
this form. The complementary error function erfc is defined as:

erfc (n) = 1− erf (n) . (24)

Solutions of the time dependent heat conduction equation very often contain error
functions or complementary error functions of the term erf(l/

√
4κt), where l is a

spatial coordinate.

5.1.1 Time Scales of Diffusion

We have seen already in the first unit that thermal equilibration is a process that
is rapid at first (when the curvature of isotherms is still large) and then slows down
more and more and the complete equilibrium is only reached after infinite time. This
asymptotic form of the equilibration may also be seen in the shape of the error function
on Fig. 21. Clearly, it is often useful to define some point in time when we call
the equilibration to be ”complete”. In order to identify such a ”time of complete
equilibration”, we use the fact that solutions of the heat flow equation often contain
the term erf(l/

√
4κt). The shape of the error function in Fig. 21 shows that it reaches

asymptotically 1 as n get very large. Correspondingly, the term (l/
√
4κt) will reach
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Figure 21: The error function and the complementary error function. The dashed frame
in a shows the part of erf(n) that is shown enlarged in b.

1 for large l (regardless of t), or for small t (regardless of l). We can also see that –
because time is in the denominator inside the error function – complete equilibrium
is reached only after infinite time (when the term inside the brackets asymptotically
approaches zero). In order to define a “duration of equilibration” we may want to
arbitrarily choose a point in the equilibration process where the argument of the error
function (for which we use n in eq. 23) is 1. This means that:

(

l√
4κt

)

= 1 or : t =
l2

4κ
. (25)

Figure 21 illustrates that for the argument to be 1 (where t = l2/(4κ)), the thermal
equilibration is 84.3% complete. This arbitrary value is often chosen as a scaling factor
for the equilibration history where it may be said that the diffusive equilibration is
“largely complete”. In fact, because this is a only a rough measure, the ”4” is often
left off this relationship and it is written:

teq = t =
l2

κ
. (26)

The value of teq in eq. 26 is an important measure to estimate the duration of
equilibration. It is often called Thermal Time Constant or: Diffusive Time Scale of

Equilibration. In summary, the basic message of this section is:

– During conductive processes the duration of thermal equilibration increases with
the square of the length scale of the equilibrating body and inverse proportionally
with the diffusivity.
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For diffusivities of the order of κ = 10−6m2s−1 this means that regional metamor-
phism of nappe piles that are several tens of kilometers thick should last of the order
of several tens of my.

Table 3: Different values of the thermal time constant teq for a series of geologically relevant
length scales l.

l teq = l2/2κ teq = l2/π2κ

10 m 5 · 107 s≈ 1.58 y ≈ 100 y 1.01 · 107 s≈ 16 weeks ≈ 10−1 y

100 m 5 · 109 s≈ 158 y ≈ 102 y 1.01 · 109 s≈ 32 y ≈ 101 y

1 km 5 · 1011 s≈ 15 000 y ≈ 104 y 1.01 · 1011 s≈ 3 200 y ≈ 103 y

10 km 5 · 1013 s≈ 1.5 my≈ 106 y 1.01 · 1013 s≈ 320 000 y ≈ 105 y

100 km 5 · 1015 s≈ 158 my ≈ 108 y 1.01 · 1015 s≈ 32 my ≈ 107 y

5.2 Aging Oceanic Lithosphere

The oceanic crust that is produced from partial mantle melts at the mid-oceanic ridges
is only of the order of 5–8 km thick. That is, it is much thinner than the continental
crust. At the mid-oceanic ridge the thickness of the entire oceanic lithosphere is that
of the crust (Fig. 22). The high potential energy of the ridges forces this crust to move
away from the ridge. As the oceanic crust ages and moves further and further away
from the mid-oceanic ridge, the asthenosphere cools and becomes part of the oceanic
mantle lithosphere. It is often said that the mantle successively “freezes” onto the base
of the oceanic lithosphere as it ages. While this describes the process quite intuitively,
it is somewhat incorrect as the asthenosphere itself is not molten. Regardless, the
process of the successive cooling of the aging oceanic lithosphere can be described
with the diffusion equation using simple initial and boundary conditions. Indeed, the
description of oceanic lithosphere with these boundary conditions has become one of
the most successful models of plate tectonic theory (s. a. Sclater et al. 1980). It is
called the half space cooling model.

5.2.1 The Half Space Cooling Model

As any other problem in the theory of heat conduction, the half space cooling model
relies on the integration of eq. 6, using a set of boundary and initial conditions. These
conditions are provided by geological observation: The temperature at the surface
(T − s) of mid-oceanic ridges is that of the water temperature. For simplicity, we
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Figure 22: Thickness and thermal profile of oceanic lithosphere at a series of points..

assume that it is Ts = 0. Below the ridge, the mantle temperature is almost constant
– convection equalizes all temperature gradients. Thus, we can write a very simple
initial condition describing the thermal profile below mid-oceanic ridges:

– T = Ts at the depth z = 0 and:

– T = Tl in all depths z > 0 at time t = 0.

This initial condition is illustrated in T -z-diagram on the bottom right corner of
Fig. 22. For the upper boundary condition it is obvious to assume that the temper-
ature at the ocean floor remains constant. As there is effectively no lower boundary,
we assume that it lies at infinity and that the temperature there is T = Tl (Tl is the
temperature at the base of the lithosphere). We can write this as follows:

– T = Ts at z = 0 for all t > 0 and:

– T = Tl at z = ∞ for all t > 0.

(Fig. 22). The solution of the heat conduction equation for these boundary conditions
is:

T = Ts + (Tl − Ts)erf

(

z√
4κt

)

. (27)

This solution is already a bit familiar to us from section 5.1. Fig. 23a shows temper-
ature profiles through oceanic lithosphere of different ages, that were calculated with
eq. 27. The curves correspond to the two sketches of thermal profiles in the middle
and on the left of Fig. 22. Fig. 23b shows the depth of a series of isotherms as a
function of age.
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Figure 23: a Temperature T versus depth profiles through oceanic lithosphere at a number
of different ages labeled in my. b The depth of isotherms (in ◦C) in oceanic lithosphere as
a function of age between 0 and 100 my. The curves on both figures were calculated with
eq. 27 assuming Tl =1280 ◦C. The age can be converted into distance from the mid-oceanic
ridge by using x = u/t where x is the distance from the ridge and u is the rifting rate.

5.2.2 Surface Heat Flow: The Test for the Model

Temperature profiles calculated with this model for the cooling oceanic lithosphere
can not be tested directly, as we cannot drill deep enough into the oceanic lithosphere
to measure temperature in any representative way. Our observations are confined to
parameters which we can measure near the surface. One of these parameters is easy to
measure and very useful to infer the thermal profile: the surface heat flow qs (Pollack
et al. 1993). The surface heat flow is the product of thermal conductivity and the
thermal gradient at z = 0. This can be calculated from eq. 27 and can be compared
with measured data in the oceans. To obtain surface heat flow we must differentiate
eq. 27 with respect to depth and evaluate it at z = 0. From eq. 27 this is:

qs = k(Tl − Ts)
d
(

erf
(

z√
4κt

))

dz ,z=0
. (28)

As the error function itself is an integral (see eq. 23), it is easy to differentiate eq. 27
(sect. 5.1). We get:

qs = k(Tl − Ts)

√

1

πκt
. (29)

This equation can be rewritten for the description of different oceanic plates with
different rifting rates. For this, we express the rifting rate u as u = x/t. There, x is
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Figure 24: Measured surface
heat flow of oceanic lithosphere
(bars) as a function of age
overlayed over curves calculated
with the half space cooling
model by different authors, for
example eq. 30.

the distance from the mid-oceanic ridge and t is the age. If we replace t in eq. 29 by
x/u, we get:

qs = k(Tl − Ts)

√

u

πκx
. (30)

Eq. 30 shows us that the surface heat flow as a function of distance from the mid-
oceanic ridge is a square root function of distance x from the ridge (as all other
parameters in this equation are constants). Fig. 24 shows the surface heat flow in
oceanic lithosphere as calculated with eq. 30. The heat flow data of Sclater et al.
(1980) show that these curves correspond well with heat flow measured in the deep
oceans. We will show later in this course that the half space cooling model is not only
a good description for the temperatures and heat flow in oceanic lithosphere, but can
also be used to describe the water depth of the oceans. It can even be used to calculate
the magnitude of the ridge push force. The relationship between all these parameters
that are described with the half space cooling model is called the age-depth-heat flow

relationship of oceanic lithosphere. This age-depth-heat flow relationship corresponds
fantastically well with our observations up to an age of the oceanic lithosphere of 50
– 80 my. The age-depth-heat flow relationship is generally accepted as one of the
greatest successes of plate tectonic theory.



40 Unit 6

6 Unit: Production and Advection of Heat

We discern three fundamentally different geological mechanisms that produce heat:

– radioactive heat production,

– chemical heat production,

– mechanical heat production.

In the next sections we discuss the geological relevance of mechanical and chemical
heat production. In general, the rate of temperature change due to heat production
may be described by:

dT

dt
=

S

ρcp
. (31)

There, T , t, ρ and cp correspond to temperature, time, density and heat capacity as
discussed on p. 21 and S is the volumetric rate of heat production in J s−1 m−3 =Wm−3.
Heat production rate must be divided by density and specific heat to convert the vol-
umetric heat production rate into a rate of temperature change, just as we have done
with heat flow in section 3.2. If S is positive, heat is produced, dT/dt is positive and
rocks heat up. If S is negative, heat is consumed, dT/dt is negative and rocks cool.
The heat production rate S can be of radioactive, chemical or mechanical origin so
that we can write:

S = Srad + Schem + Smec . (32)

All three of these components may have a significant influence on the thermal evolu-
tion of rocks depending on the circumstances.

6.1 Radioactive Heat Production

Radioactive (or: radiogenic) heat is produced in the Earth predominantly by the nat-
urally occurring radioactive isotopes 238U, 235U, 232Th and 40K. Of the two naturally
occurring uranium isotopes 99.28% is 238U and only 0.72% is 235U. All of the natu-
rally occurring thorium is 232Th and only 0.0119% of the natural potassium is 40K
(Turcotte and Schubert 2002). As pure metals, these 4 isotopes produce the following
amounts of heat: 238U = 9.46 × 10−5W kg−1; 235U = 5.69 × 10−4W kg−1; 232Th =
2.64× 10−5W kg−1 and 40K = 2.92× 10−5W kg−1. Fortunately, the concentrations
of these elements in rocks are quite low so that substantially less heat is produced per
cubic meter of rock. Table 4 lists some average concentrations of the heat producing
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S

Figure 25: a Radioactive heat production in the crust through time. Note that the heat
production in the Archaean 3 Ga ago was about twice as high as today. Also note that U
and Th are the primary heat producing elements today, but it was U an K in the past. b

Rates of radiogenic heat production in granites from the Mt Painter province, a low-pressure
high-temperature metamorphic terrain in Australia (after Sandiford and Hand 1998b). Heat
production rates in other Proterozoic terrains of Australia are similar. N is the number of
data points.

elements in the continental crust and in the mantle. We can see that the Earth’s man-
tle (oceanic crust has comparable values) contains about 2 orders of magnitude less
radioactive elements than the crust. These concentrations are still important when
considering problems related to cooling of earth as a whole or when thinking about the
vigor of mantle convection in the Archaean, but for considerations of the heat budget
of the Phanerozoic crust we need not consider radioactivity in the mantle. However,
the crustal heat production is significant: The sum of the values listed in this table
is about 3.4× 10−10 Wkg−1, which corresponds roughly to a heat production rate of
about one µWm−3 (see eq. 31). Using typical values for heat capacity and density
of crustal rocks, S= 1 µWm−3 converts to a heating rate of of about 10◦C per million
years. So the burial of highly radiogenic bodies by deformation can cause significant
heating ! In fact, most granites have substantially higher heat productions than those
listed in Table 4 and there are many terrains around the world where radiogenic heat
production rates is significantly higher than some µWm−3 (Fig. 25b; Sandiford and
Hand 1998b). Radiogenic heat production in the continental crust is responsible for
about half of the heat flow that we can measure at the surface of the Earth.
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element U Th K

mean mantle concentration (kg/kg) 31× 10−9 124× 10−9 31× 10−5

mean crustal concentration 1.24× 10−6 5.6× 10−6 1.43× 10−2

mantle heat production (W/kg) 3× 10−12 3.2× 10−12 1.1× 10−12

crustal heat production (W/kg) 1.4× 10−10 1.5× 10−10 0.5× 10−10

Table 4: Concentrations of heat producing elements in the crust and undepleted mantle
(after Turcotte and Schubert 2002). In granites, the heat production is about 2–3 times
higher than the values listed here. The heat productions are per kg of rock, i.e. the values
come from concentrations given in the first two rows multiplied with the heat productions
given in the text.

6.2 Mechanical Heat Production

The forces that deform rocks can be viewed as mechanical energy that is added to the
rock. The work done on the system is the product of force applied to the system times
the distance over which it is deformed. This energy will be taken up by a variety
of mechanical energy sinks. A part of this energy will be transformed into potential
energy, some into dislocation energy in crystal lattices, some in noise and other forms
of energy. However, most authors agree that the majority of this mechanically pro-
duced energy will be transformed into friction heat. Frictional heating is also often
referred to as shear heating (because it is produced when rocks are sheared) or viscous
dissipation. We abbreviate this mechanical heat production with Smec. The rate of
mechanical heat production Smec is given by the product of deviatoric stress τ and
strain rate ǫ̇. Stress has the units of Pascal. One Pascal is one Joule per cubic meter
(1 Pa=1 Jm−3). Thus, stress can be expressed as energy per volume and energy is
stress times volume. These conversions between the different units should be straight
forward, remembering the well-known relationships:

force = mass× acceleration and stress =
force

area
.

The units of acceleration are m s−2 and those of force are therefore: kgm s−2. Stress
and pressure therefore have the units of kgm s−2 m−2 or Pa=kgm−1 s−2 and energy
has the units of J=kgm2 s−2. Accordingly, if high deviatoric stresses are required to
deform a rock, a lot work is done on the system and the mechanical energy production
rate is high, and vice versa. We notice that when we rub our hands together: The
harder we press and the faster we rub, the warmer they get. Both deviatoric stress



Geodynamik in Innsbruck: Unit 6 43

and strain rate are tensors and the rate of mechanical heat production is therefore
given by a tensor product (see e.g. Burg and Gerya 2005). However, if we consider
only the one-dimensional case (and only normal components, i.e. we neglect shear
stresses and shear strain rates), then we can view the mechanical heat production
rate as the simple scalar product:

Smec = τ ǫ̇ . (33)

In order to write the temperature change that arises from frictional heating we can
write in analogy to eq. 31:

dT

dt
=

τ ǫ̇

ρcp
. (34)

Note that eq. 34 is independent of the deformation mechanism. Both brittle and
ductile deformation mechanisms will produce the same amount of friction heat if
they support the same deviatoric stresses. We only may need to be careful with the
units: Brittle faults do not have a strain rate (in s−1) but a slip rate in meters per
second. The product of slip rate and deviatoric stress does not have the units of
heat production per cubic meter, but the units of heat flow (i.e. J s−1 m−2 normal to
the fault surface) which can be converted into a heating rate using the laws of heat
conduction discussed in previous sections.

6.2.1 Geological Relevance of Shear Heat Production

A range of authors have discussed the importance of shear heating on a geologi-
cally significant scale (e. g. Burg and Gerya 2005; Nabelek and Liu 1999; Brun and
Cobbold 1980; Lachenbruch 1980; Scholz 1980; Barton and England 1979; Graham
and England 1976). Nevertheless, its importance in many tectonic and metamorphic
processes remains contentious. This is because both, deviatoric stresses and strain
rates on the scale of the crust are not very well constrained and are among the most
discussed geological parameters. We can constrain shear heating to a certain degree
using eq. 34 to estimate the temperature increase a rock might experience for some
realistic deviatoric stresses and strain rates.

Methods to measure geological strain rates show an upper limit of ǫ̇ = 10−12 to
10−14 s−1. These numbers imply that deformation doubles the thickness of a rock
package (strain of about 100 %) within 1–10 my. The magnitude of deviatoric stresses
is much less constrained. Stress determination experiments are performed at strain
rates of ǫ̇ = 10−6 s−1 and must be extrapolated by six to eight orders of magni-
tude of strain rate. The relevance of such experimental results remains therefore
debated. Moreover, deviatoric stress is strongly temperature dependent. Neverthe-
less, we know that the order of magnitude of plate tectonic driving forces is between
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1012 and 1013 Nm−1 and this implies a rock strength of 50–100 MPa, averaged over
the thickness of the lithosphere. This estimate comes out of the strength that rocks
need to support the weigth plateaus like the Tibetan plateau or the Altiplano and/or
out of arguments about the Brace-Goetze lithosphere, that we discussed in the first
unit of this course. (Note however, that we abbreviated deviatoric stresses with σ
instead of τ there).

We could thus estimate shear heating as follows: If stress and strain rate remain
constant over time, then integrating of eq. 34 gives:

T = t× τ ǫ̇

ρcp
. (35)

The temperature at the end of deformation for a longitudinal strain of 1 is then:
T = τ/(ρcp) (ǫ̇ · t = ǫ = 1 ). Using standard values for the density and specific heat
(ρ=2700 kgm−3 and cp =1000 J kg−1 K−1) we can see that a rock that has a shear
strength of 100 MPa will be heated by about 37 ◦C. We conclude that shear heating
may be of significant importance to the thermal energy budget of the lithosphere.

Figure 26: Visible evidence for
frictional heating. The left photo
shows network typical of many
pseudotachylites, the right photo
shows a pseudotachylite with
chilled margin and recrystallised
center.

Examples where friction heat production has a significant influence on the tem-
perature of rocks are well-known to us from pseudotachylites from all crustal levels
(Camacho et al. 1995; 2001; Austrheim et al. 1996) (Fig. 26). In those, friction heat
was sufficient to even melt the rock. Pseudotachylites form during seismic events
where extremely rapid deformation occurred on a very local scale. They are therefore
not very appropriate to estimate the influence of friction heat on the thermal evolu-
tion of the entire crust where we have to deal with averaged strain rates and averaged
stresses (e. g. Kincaid and Silver 1996; Stüwe 1998a). Regardless, even significant
amounts of friction heat need not be reflected in significantly increased temperatures.
Whether or not shear heating actually becomes geologically significant on a crustal
scale depends largely on 2 factors:
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– 1. It depends on the relationship between the length scale of heat production (which
determines how rapidly heat may be conducted away from the site of production)
and the time scale of heat production. For example, if a 100 m thick shear zone is
active for 1 my, then the characteristic time scale of diffusion of this shear zone is
of the order of only 1 000 y. Thus, shear heat produced over a time interval of 1
my will be largely conducted away as it is produced. In contrast, if a 15 km nappe
pile deforms under the same conditions, then its thermal time constant will be tens
of my and all heat produced within 1 my will be largely retained in the pile.

– 2. It depends on the feedback between heating and softening of rocks.

In summary we can say that shear heating is a potential candidate for significant
heating of rocks.

6.3 Chemical Heat Production

Different rocks are characterized by different internal heat contents defined by the
strength of bonding of the atoms in the crystal lattices in the rock-forming minerals.
During chemical reaction, the difference in heat content between reactants and prod-
ucts is released or consumed as latent heat of reaction. We abbreviate this chemically
produced or consumed heat with Schem. By far the largest majority of chemical reac-
tions are endothermic when the temperature increases. Because of this, temperature
rise of rocks may be buffered by the phase transition. Correspondingly, most reactions
are exothermic when crossed down temperature. However, most chemical reactions
have a positive slope in a pressure-temperature diagram. Thus exothermal reaction
can not only be triggered by a decrease in temperature, but also by an increase in
pressure (at constant temperature). In very general terms, we can chemical reactions
that produce heat into three groups. In decreasing order of importance these are:

– Phase transitions: The chemically produced heat of reactions involving phase
transitions is significant to the thermal budget of rocks.

– Dehydration reactions: In the solid state, dehydration reactions are the most
important producer of reaction heat (Connolly and Thompson 1989; Peacock 1989).
In the greenschist facies they produce of the order of 4 ·106 J per kg of released
water. However, rocks contain only of the order of 4% H2O and this water is being
released over quite a large temperature interval. Thus, the heat of reaction is fairly
insignificant during regional metamorphism (about 5–10 ·10−14 Wcm−3).

– Solid - solid reactions: The chemical heat production of solid – solid reaction is
negligible for geological problems.
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The geologically most important reactions that involve phase transitions are the melt-
ing reactions where the latent heat of fusion is released or the latent heat of melting is
consumed. As a consequence, it is important to consider reaction heat when dealing
with the thermal energy budget of migmatites and intrusions. A commonly used value
for the latent heat of melting of rocks is L=320 000 J kg−1. Evaporation and con-
densation reactions are also strongly exothermic and endothermic respectively, but
they are not very important in the geodynamics of the lithosphere.

6.3.1 Quantitative Description of Chemical Heat Production

The rate of reaction heat production Schem has the same units as any other heat
production rate: Wm−3. It can be described by:

Schem = Lρ
dV

dt
. (36)

In this equation L is the latent heat of reaction in J kg−1. Since we think of the
chemical heat production rate as a volumetric heat production rate, it is necessary
to multiply L by the density ρ to convert it into a volumetric heat content. The
expression dV/dt is the volumetric proportion of the reaction that occurs per unit
time (in s−1). Note that V has the units of percent and not cubic meters. Thus, the
equation determines the part of L that is freed in every time step of the reaction.
Substituting eq. 36 into eq. 31 we can now formulate the temperature change during
chemical heat production (and neglecting conduction) to be:

∂T

∂t
=

L

cp

∂V

∂t
. (37)

Clearly, we could add a diffusion term to this equation to simultaneously consider
chemial heat production and conductive distribution of this heat. However, as most
up-temperature reactions are endothermic and most down temperature reactions
exothermic, actual heating or cooling by chemical heat production rarely occurs.
Instead, this chemical heat is more responsible for buffering the temperature increase
or decrease.

6.3.2 Thermally Buffered Melting

Melting during prograde metamorphism in the upper amphibolite and granulite facies
is a strongly endothermic process. Thus, the rate with which temperature increases
during metamorphism at this grade will be buffered by the melting reactions. At
univariant melting reactions, the temperature will remain constant until the phase
transition from solid reactants to liquid products is complete. It is the very same
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reason why we have so much snow slush on our roads in spring although an estimate
of the time of thermal equilibration would long have indicated that all ice must have
melted: ice and water will both have a temperature of 0 ◦C, until all ice has melted,
even if the air temperature has been above freezing for quite some time. For the same
reason water will boil at a constant temperature of 100 ◦C, regardless of the heat
added by the stove, until it all has evaporated. In the buffering interval, the amount
of heat added to the rock from the outside is exactly balanced by the amount of heat
consumed by the phase transition.

Let us illustrate the buffering effects that occur during cooling and crystallisation
of a eutectic melts (i.e. all melt crystallises at the solidus Ts). If the crystallisation
puts out L=320 000 J kg−1 and you need about 1000 J per Kilogram to heat a rock
by one degree (cp = 1000J kg−1◦C−1) then clearly the buffering is equivalent to a
temperature rise of:

∆T = L/cp (38)

In other words, if this melt cools with a constant cooling rate s of s =10◦C per
million years (s = 10/(3.15× 1013)s then the time of buffering is simply:

t = LV/scp (39)

where we have inserted V now again as the volume fraction that actually crystallises
(you can leve this out too). For a typical value of L = 300000 J kg−1 this gives ≈ 1014

s or about 3 million years. After this time interval is over, all melt is crystallises and
the rock continues to cool at rate s. (Be careful not to confuse s (cooling rate) with
s (SI unit seconds) here). In other words, it takes about three times as long to melt
snow at zero degrees temperature to water at zero degrees temperature, than it takes
to heat zero degree water to boiling.

6.4 Advection of Heat in the Lithosphere

Heat can be transported actively by the motion of warm rocks. Besides conduction and
production, this is the thirs possible heat transfer meachanism. We discern between
advection and convection of heat. Advection is generally used if the active transport
of heat is only in one direction, for example the transport of heat by an intrusion
that moves in the vertical direction. Convection is generally used when referring to
material transport in a closed loop, for example the convection of mantle material in
the asthenosphere, or that of fluids in a hydrothermal system. In this book, we only
deal with advection. One-dimensional active transport of heat (for example in the
vertical direction z), relative to the z direction may be described by:

∂T

∂t
= u

∂T

∂z
. (40)
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In eq. 40, u is the transport velocity; the derivative ∂T/∂z describes the thermal
gradient and ∂T/∂t is the change of temperature with time. For positive u, eq. 40
describes transport against the spatial coordinate z: transport is from high z towards
lower z. Eq. 40 is also called the transport equation and is equally applicable to
the transport of mass, for example during advection of concentration profiles through
a crystal lattice. There are three different important mechanisms by which heat is
advected in the lithosphere that require different methods of description. These three
mechanisms are:

– advection of heat by magmas, e. g. magmatic intrusion;

– advection of heat by solid rock motion, e. g. erosion or deformation;

– advection of heat by fluids, e. g. during infiltration events.

The difference between these three processes in terms of their mathematical descrip-
tion arises mainly from the relative rates of advective and diffusive processes. These
three processes will therefore now be discussed separately.

During intrusion of magma from deeper into shallower levels in the crust, the heat
of the magma is transported to higher crustal levels by the motion of the magma
itself. The process of magmatic intrusion is - in general - much faster than most other
geological processes, for example the thermal equilibration during contact metamor-
phism. It is therefore usually not necessary to describe the intrusion process itself by
an advection equation and we have dealt with this in Unit 4.

6.5 Heat Advection by Solid Rock

Any movement and deformation of rocks will carry the heat it contains with it. For
example, during exhumation of rocks by erosion, the lithosphere (and its heat) are
moved vertically upwards. The column is moved through a surface of constant tem-
perature - the surface of Earth. Erosion is therefore a heat advection process. In a
similar way, any other motion of rocks, for example during thrusting or folding may
be interpreted as an advective process. Here we will only discuss one-dimensional,
vertical advection of heat to and from the earth’s surface. The time scale of continen-
tal denudation processes is comparable to the time scale of thermal equilibration on
the scale of the crust and we can therefore not neglect to consider both processes at
the same time. If we want to describe advection and diffusion of heat simultaneously,
then we must expand eq. 40 by the diffusion term from eq. 6. The equation that must
be solved becomes:

∂T

∂t
= κ

∂2T

∂z2
+ u

∂T

∂z
. (41)
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Figure 27: Schematic illustration of one-
dimensional advection of heat by erosion. The
coordinate system is fixed with z = 0 at the
earth’s surface. Temperature profiles through
the crust are shown for two times: at the onset
of erosion t0, at which a linear geotherm is as-
sumed and a later time t1. The advection rate
u is positive upwards. In the shown time inter-
val the erosion process advects the geotherm by
u × t1 meters upwards. Simultaneous diffusion

causes the curvature of the temperature profile.

A schematic illustration how the two processes interact to shape a geotherm during
erosion is shown in Fig. 27. You can see that diffusion and advection interact in
shaping the temperature profile until a certain depth length scale), but that advection
dominates at larger depths (length scales).
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7 Unit: The Elevation of Mountains

Isostasy is a stress balance. Isostasy relates the vertical distribution of mass to ele-
vation in a state of equilibrium in which the lithosphere is considered to be floating
on the underlying relatively weak asthenosphere. Isostasy does a good job of explain-
ing the first-order variation of elevation over most of the Earth’s surface. When we
consider isostatic equilibrium it is useful to discern:

– hydrostatic isostasy and

– flexural isostasy.

Hydrostatic isostasy is a stress balance in the vertical direction only. Thus, hydro-
static isostasy is a model that should really only be applied to regions that are large
compared to the elastic thickness of the lithosphere. In other words, to geological
features that are of at least several hundreds of kilometers in extent, i.e. areas like
the Tibetan Plateau or the Canadian Shield. Flexural isostasy describes a stress bal-
ance in two or even three dimensions (s. Fig. 28). As a consequence, flexural isostatic
considerations can be used to interpret the shape of much smaller scale features, for
example foreland basins or subduction zones.

q
qba

Figure 28: Illustration of the difference between a hydrostatic isostasy and b flexural
isostasy. In a all vertical columns are considered independently of each other. In b the
shear stresses between vertical columns are akso considered. q is the load.

7.1 Hydrostatic Isostasy

The hydrostatic isostatic model is based on the assumption that all vertical profiles
through the lithosphere may be considered independently of each other. That is,
shear stresses on vertical planes are neglected (Fig. 28a). Then, there will be a depth
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at which the vertical stresses of all vertical profiles are equal. This depth is called
the isostatic compensation depth. At this depth, the weight of all columns are equal.
If you dive underneath a boat you dive beneath this isostatic compensation depth:
Regardless if the boat is above you or not, the water pressure is the same. If we
consider two profiles A and B, the isostasy condition may be formulated in terms of
an equation (s. Fig. 29):

σA
zz|z=zK = σB

zz|z=zK . (42)

In this equation σA
zz and σB

zz are the vertical normal stresses of the two columns A
and B and the depth zK is the isostatic compensation depth. The vertical dash stands
for “at the location”. For most geological purposes we want to compare the elevation
of two neighboring lithospheric columns in isostatic equilibrium. For this, it is useful
to assume as isostatic compensation depth the shallowest possible depth below which
there is no density differences between two neighboring columns. For most examples
this can be assumed to be the base of the lithosphere of the column which reaches
deepest into the asthenosphere.

The downward force that is exerted by one cubic meter of rock is given by the
product of its mass × gravitational acceleration. The downward force that is exerted
by an entire vertical column per square meter (the vertical normal stress) is thus the
product of density and acceleration integrated over the thickness of the column:

σzz

∣

∣

∣

z=zK
=

∫ zK

0

ρgdz . (43)

Inserting eq. 43 into eq. 42 gives:

∫ zK

0

ρA(z)gdz =

∫ zK

0

ρB(z)gdz , (44)

where ρA(z) and ρB(z) are the densities of the two columns that are to be compared,
both as a function of depth, z. Within the coordinate system shown in Fig. 29, the
lower limit of integration 0 corresponds to the upper surface of the higher of two
columns that are to be compared. The upper limit of integration is the isostatic
compensation depth zK. g is the gravitational acceleration. Eq. 44 is the basis of
all calculations of isostasy. When considering the isostatically supported elevation of
a mountain belt, it is useful to divide the density variations in the lithosphere into
two parts (a) density variations that are due to material differences and (b) density
variations that are caused by thermal expansion.
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Figure 29: Illustration of isostatic equilibrium.
Note that the z-axis is defined positively down-
wards and has its origin at the surface of the
light shaded block (e.g. an iceberg or the litho-
sphere) that is assumed to float in a dark shaded
region of higher density (e.g. water or the as-
thenosphere).

c

7.1.1 Isostasy due to Material Differences

We begin by solving the balance written out in eq. 44 for the elevation of a single
lithospheric column above the asthenosphere. For simplicity we forget in the first
instance about the mantle part of the lithosphere and consider the crust only so that
zK = zc (Fig. 29). The block in Fig. 29 has a constant density ρc (e.g. density of the
crust) and floats in a denser medium of the constant density ρm (e.g. density of the
mantle). We call its elevation above the surface of the denser medium Hmat, although
it is just labeled as H in Fig. 29. We use the subscript mat to emphasize that – for
now – we consider only the material contribution to density differences between the
profiles A and B. The densities and the acceleration are independent of z. Thus, they
can be drawn out of the integrals on both sides of eq. 44 and integration is easy. By
integrating the left half of the equation and splitting up the right half of eq. 44 we
get according to Fig. 29:

ρcgz
∣

∣

∣

zc

0
= g

∫ Hmat

0

ρairdz + g

∫ zc

Hmat

ρmdz . (45)

The density of air is negligible in comparison with ρm or ρc. Thus, the first integral
on the right hand side of eq. 45 is also negligible. After finishing the integration,
canceling out g and inserting the integration limits we get:

ρczc = ρmzc − ρmHmat . (46)

Solving for elevation H gives:

H = Hmat = zc

(

ρm − ρc
ρm

)

. (47)

This relationship describes the hydrostatically balanced elevation of the surface of a
floating body above the medium it floats in. Remember that H = Hmat emphasizes
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Airy Pratt

Figure 30: Comparison of the interpretations of the isostatic model according to Airy and
Pratt. The shading indicates density. Darker shading means higher density.

the fact that this elevation difference is only based on the material difference between
the block and the liquid. We can control this equation for some end member scenarios:
If ρc is zero, then this equation states that H = zl: the entire column floats on top of
the liquid. This is the scenario given by a kids balloon floating on a lake. Alternatively
if the two densities approach each other (ρm = ρc), then the entire body is submerged
(H = 0). This is the scenario we observe with water soaked logs that float almost
completely submerged in water. We can conclude that our observations confirm the
simple model.

7.1.2 Isostasy According to Airy and Pratt

Two centuries ago, different models were developed to explain elevation differences
observed in the mountain belts of the world in terms of the isostasy model. The
two most notable models are those of Airy and Pratt (Fig. 30). Both earth scientists
recognized that mountain belts are likely to rest in isostatic equilibrium and that
their elevation is proportional to the density contrast between crust and mantle, as
expressed by eq. 47. Pratt observed that many low lying Proterozoic shields are
made up of high grade metamorphic rocks of high density, while mountain belts are
often made up of hydrated, low grade metasediments and carbonates. He concluded
that most continental crusts extend to roughly similar depths and that the observed
differences in surface elevation are the consequence of horizontal density variations in
the crust.

In contrast, Airy estimated that the density of the crust is largely the same in
all continental regions and therefore concluded that topographically higher regions,
must be compensated by crustal roots at depth. Seismic studies in many mountain
belts show that most regions of high surface elevation are indeed compensated by
significant roots at depth.
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7.1.3 Isostasy Due to Thermal Expansion

In order to calculate the contribution of thermal expansion to surface elevation we
need to introduce α: the coefficient of thermal expansion. α has the units of strain
per temperature increment, which is K−1. For most rocks the coefficient of thermal
expansion is of the order α = 3 · 10−5 K−1. Using α and the density of the mantle ρm
(at the temperature of the asthenosphere), the density of colder rocks of the same
material as a function of temperature may be calculated with:

ρ(T ) = ρm(1 + α(Tl − T )) . (48)

There, Tl is the temperature at the base of the lithosphere at z = zl. According to
eq. 48: ρ = ρm, where T = Tl. At lower temperatures, the density increases linearly.
At the surface, where we can assume that the temperature is Ts =0 oC, eq. 48 becomes:

ρ(T=Ts) = ρ0 = ρm (1 + αTl) . (49)

If the density of the mantle is about ρm=3200 kgm−3 at Tl, then the density at the
surface is: ρ0=3300 kgm−3. Assuming a linear geotherm in the lithosphere, we can
describe the mean density of the lithosphere with:

ρ = ρm

(

1 + α
Tl + Ts

2

)

. (50)

In order to estimate which proportion of the elevation of a mountain belt is due to
thermal expansion (Htherm), we insert eq. 50 into the left hand side of eq. 44. The
following algebra remains the same as in eq. 45 and eq. 46 except that the upper
limit of integration is not the base of the crust, but the base of the lithosphere,
because thermal expansion and contraction affects the entire lithospheric column.
After integration according to the same principles as we did before we get here:

Htherm = −zlα(Tl + Ts)/2 . (51)

The negative sign arises because ρ is larger than ρm.

7.1.4 The Elevation of Mountain Belts

First off a warning: Gravimetric data tell us that many active orogens are not in iso-
static equilibrium, but that their topography is dynamically supported. This means
the surface elevation is actively held up or pushed down and is out of isostatic equi-
librium. Dynamically supported topography may generally be found on length scales
that are comparable to the elastic thickness of the lithosphere and will be discussed
there (e. g. Forsyth 1985; Lyon-Caen and Molnar 1983; Molnar and Lyon-Caen 1989).
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It is therefore emphasized that the model of hydrostatic isostasy should only be used
for topographic features that are at least some hundreds of kilometers in lateral ex-
tent. For example, the European Alps are barely 200 kilometers across and are only
partly compensated isostatically (Karner and Watts 1983). This limitation of the hy-
drostatic model should be kept in mind when we interpret the simple considerations
below.

Nevertheless, let us now consider the elevation of a lithosphere with the thickness zl
and a crustal thickness of zc above its surroundings considering both the influence of
the different materials and the influence of thermal expansion. The higher density of
the cold lithosphere provides a negative contribution to the overall buoyancy (eq. 51).
The material contribution of the crust to the elevation, on the other hand, is positive
and was derived in eq. 47. Density variations within the mantle part of the lithosphere
are neglected here. Then, the isostatically supported surface elevation relative to the
surroundings is given be the sum of the thermal and the material contributions:

H = Hmat +Htherm = zc

(

ρm − ρc
ρm

)

− zlα(Tl + Ts)/2 . (52)

If we summarize all the material parameters into the constants:

δ = (ρm − ρc)/ρm and : ξ = α(Tl + Ts)/2 , (53)

then this eq. 52 simplifies to:

H = δzc − ξzl . (54)

If we insert meaningful numbers into eq. 52 (e. g. ρm =3200 kgm−3, ρc =2700 kgm−3),
we get:

δ ≈ 0.15 and : ξ ≈ 0.018 . (55)

This implies that the influence of material difference between crust and mantle, per
meter of lithospheric column, is about ten times more important to the isostatically
supported surface elevation than the influence of the thermal expansion. However,
because the crust constitutes only about one third of the lithosphere, the crustal
material contribution to the elevation is in total only about 3 times larger than the
contribution of thermal contraction, which applies to the whole lithosphere. In total,
H is about 3 600 m.

This is the elevation of the upper surface (of a lithosphere with zc and zl as above)
above the hypothetical surface of a liquid mantle, as we illustrated in Fig. 29. Mid-
oceanic ridges are the only place on the globe where we can measure the depth of this
reference level. It turns out that mid-oceanic ridges lie indeed about 3 600 m below
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Figure 31: Isostatically
supported surface elevation of
mountain belts in the fc-fl-plane
(in km with eq. 56). Following
assumptions were used:
ρm =3200, ρc =2750,
α =3 · 10−5, zc =35 km,
zl =100 km. Using these values,
the two constants are: δ ≈ 0.14
and ξ = 0.018. Typical orogenic
evolutions are superposed.

0.5
0.5

1 1.5 2

1

1.5

2

4

3

2

1

0
–1

–2

crustal thickening strain (fc)

lih
o

s
p

h
e

re
 t

h
ic

k
e

n
in

g
 s

tr
a

in
 (

fl
)

Alps

Ti
be

ta
n

P
la

te
au

the average elevation of the continents and lie at a very constant depth below sea
level (Turcotte et al. 1977; Cochran 1982).

In most geological problems it is much more interesting to know the elevation of a
mountain belt above its surroundings, rather than above the mid-oceanic ridges. For
this purpose, it is useful to reformulate eq. 52, so that the elevation is given as the
elevation difference between a thickened (or thinned) lithosphere and an undeformed
reference lithosphere:

H = (δfczc − ξflzl)− (δzc − ξzl) = δzc(fc − 1)− ξzl(fl − 1) . (56)

The parameters fc and fl describe the thickening strains of the crust and the mantle
lithosphere. The elevation of isostatically supported mountain belts above the unde-
formed reference lithosphere is shown in Fig. 31 (for the concept of an undeformed
reference lithosphere see: Le Pichon et al. 1982). More detailed assumptions about
the thermal expansion have no influence on the surface elevation (e. g. Zhou and
Sandiford 1992). Fig. 31 shows clearly that homogeneous thickening of the entire
lithosphere (a diagonal line from bottom left to top right in this diagram) causes rel-
atively small changes of the surface elevation, because the two contributions in eq. 54
and eq. 56 have opposite signs. Accordingly, the negative buoyancy caused by the
thickening of the mantle part of the lithosphere is largely compensated by the positive
buoyancy of the thickened crust. It may also be read from this figures, that doubling
of the crust, without thickening of the lithosphere would imply an isostatic uplift of
about 3–4 km.
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8 Unit: The Depth of the Oceans

The water depth of the oceans In isostatic equilibrium) is a direct function of the
distance to the mid-oceanic ridges. The functional relationship between water depth
and distance from the mid-oceanic ridge was described with a fantastically simple
model by Parsons and Sclater (1977). Their model is one of the largest successes of
the theory of heat conduction and we have discussed it already in unit 3.

Oceanic lithosphere consists (except for a thin 7 km thick crust) largely of astheno-
sphere material that has cooled to form lithospheric mantle. Because of the small and
constant thickness of the crust, material contributions to density variations may be
neglected and thermal expansion (contraction) is the governing factor for variations
in the density structure. In order to use this density variation to estimate the isostat-
ically supported elevation of the ocean floor, we use the model sketched in Fig. 32.
According to eq. 44 the vertical normal stresses of the columns A and B must be the
same in the compensation depth z = zl. For column A the vertical normal stress at
depth z = zl is given by:

σA
zz|z=zl = ρwgw +

∫ zl

0

ρ(z)gdz . (57)

There, w is the water depth in column A, ρw is the water density, g is the gravitational
acceleration and ρ(z) is the density of the lithosphere as a function of depth. For
column B we can formulate:

σB
zz|z=zl = ρwgw + ρmgzl . (58)

(see Fig. 32). After inserting eqs. 57 and 58 into eq. 44, the isostasy condition of gets
the following form:

ρmzl + w(ρm − ρw) =

∫ zl

0

ρ(z)dz . (59)

A B
z w= –
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r( )z

w
z = 0

z z= l

Figure 32: Schematic profile through a mid-oceanic ridge and the oceanic lithosphere as used
for the calculation of water depth. The oceanic crust is neglected because it is everywhere
of the same thickness.
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With foresight to the following steps, we bring the first term of this equation to the
right hand side, find its derivative with respect to z and write it therefore into the
integral. Eq. 59 gets the form:

w(ρm − ρw) =

∫ zl

0

(ρ(z) − ρm)dz . (60)

This equations states that the water depth is dependent on the density structure as a
function of depth ρ(z). In oceanic lithosphere this density function is a direct function
of the temperature profile. Thus, if we know the temperature as a function of depth,
then ρ(z) in eq. 60 is known, because we know already the relationship between density
and temperature from eq. 48. Thus we can begin by inserting eq. 48 into eq. 60:

w(ρm − ρw) =

∫ zl

0

ρmα(Tl − T (z))dz . (61)

The variable T (z) is the only unknown in this equation, but it is well-described by the
half-space cooling model and we determined it in sect. 5.2. . Thus, the temperature
profile of eq. 27 may be directly inserted into eq. 61. We get:

w(ρm − ρw) =

∫ zl

0

ρmα(Tl − Ts)erfc

(

z√
4κt

)

dz (62)

or, after taking the constants out of the integral and solving for w:

w =
ρmα(Tl − Ts)

(ρm − ρw)

∫ zl

0

erfc

(

z√
4κt

)

dz . (63)

This is not too difficult to solve and results in:

w =
2ρmα(Tl − Ts)

(ρm − ρw)

√

κt

π
. (64)

If we insert standard values for all the constants in this equation we get:

w ≈ 5.91 · 10−5
√
t . (65)

In words, the depth of the water is proportional to the square root of age of the
oceanic lithosphere. Note that this water depth is only the additional water depth on
top of the water depth at the mid-oceanic ridge (Fig. 32). We can convert this into
water depth as a function of distance from the mid-oceanic ridge if we substitute age
by the ratio of distance to rifting rate: x/u, (which is also age). Fig. 33 shows some
water depth profiles calculated with this equation. The fantastic coincidence of these
curves with bathymetric measurements in the oceans of the world confirm the model.
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Figure 33: Profiles of water
depth as a function of distance
from the mid-oceanic ridge for
three major oceans of this planet
in comparison with water depth
as calculated with eq. 64.

8.1 Flexural Isostasy

Most topographic features of our planet that are less than many hundreds of kilo-
meters across are not completely in hydrostatic isostatic equilibrium. This includes
whole mountain ranges like the European Alps (Karner and Watts 1983; Lyon-Caen
and Molnar 1989) and can be measured gravimetrically: Gravimetry measures mass
and in isostatic disequilibrium the total mass above the isostatic compensation depth
is not everywhere the same. Thus, gravity anomalies may be interpreted in terms of
the degree of isostatic disequilibrium. Isostatic disequilibria may form in response to
a large range of processes. For example, a continental plate may be actively pushed
downwards by the load of another plate, or it may be actively held up by mantle
convection exerting an upwards force to the bottom of a plate. Topographic features
that are created by non-isostatic processes are called: dynamically supported. Flexural
isostasy is a stress balance that also considers horizontal elastic stresses (Fig. 28b).
Flexural isostasy is therefore at least a two-dimensional stress balance. It may be
used to interpret surface topography in terms of both, hydrostatic balance and elastic
flexure.

8.1.1 Examples of Elastic Deformation

Although it may not be intuitive that rocks can be elastic, there are quite a few
observations that show us that they are! For example, regular spacing between joints
and other cracks is a function of the elastic behavior of rocks and the continuous
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versus discontinuous displacement across seismically active structures is an elastic
deformation that can be measured even with GPS measurements. Elastic strains are
of the order of about one per mil at the most.

• Examples in oceanic lithosphere Oceanic lithosphere is rheologically stronger
than continental lithosphere and is therefore little internally deformed. It has a very
uniform thickness and a largely flat surface. As a consequence, plate scale elastic
features that develop in response to vertical loads may spectacularly be seen with-
out much disturbance by features created by other deformation mechanisms. The
best known example for elastic deformation of the oceanic lithosphere are the valleys
around sea mounts, for example around the Hawaii-Emperor chain. They were cre-
ated by hot spots that have their origin deep inside the mantle (Fig. 34). The volcano
may be considered as an external load to a plate of more or less constant thickness
that bends it downwards. Another example of elastic deformation of oceanic litho-
sphere is the bending of the plates at subduction zones. The shape of trenches and
the fore bulge on the seaward side of the trench are also the consequence of elastic
bending of the plate.

• Examples in continental lithosphere The elastic bending of continental plates
may be observed in the foreland of many collisional orogens, where molasse basins
form as the consequence of the elastic deflection of the plate in response to the load
of the mountain belt. One of the best know examples is the northern molasse of the
European Alps. There, the European Plate is bent downwards under the load of the
alpine mountain chain. The deepest point of the deflection is the valley of the river

Figure 34: Flexure of oceanic
lithosphere due to the loading of
a sea mount.

hot spot

water

oceanic plate

x

w
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Figure 35: Bending of an ideal
elastic plate in a simplified model
view which is useful for the de-
scription of bending lithospheric
plates.
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Donau. However, in collisional orogens the external load applied by the weight of the
mountain belt is partly compensated by an internal loads: the root of the mountain
belt.

Passive continental margins also show often evidence for elastic bending of conti-
nental lithosphere. The best known examples for this are the great escarpments along
the coasts of southern Africa and Australia (Tucker and Slingerland 1994; Kooi and
Beaumont 1994). There, the unloading of the plate that is caused by the asymmetric
erosion of the continental margin is compensated by elastic updoming of the coastal
foreland. The Australian Great Barrier Reef, for example, may be interpreted as an
elastic fore bulge similar to those observed in the vicinity of subduction zones (Stüwe
1991).

8.1.2 The Flexure Equation

Elastic deformation describes an empirically derived constitutive relationship in which
stress and strain are proportional to each other. The proportionality constant between
stress and strain is called the modulus of elasticity or Young’s modulus E. How much
a plate bends under an applied stress depends on E and its compressibility, which is
described by the Poisson ratio ν.

Let us now consider the bending of a simple, ideal elastic plate like the one sketched
in Fig. 35. We also neglect buoyancy forces for now. When integrating the horizontal
normal stresses σxx, over the thickness of the elastic plate h, then it may be shown
(or even intuitively seen) that the bending moment M is proportional to the curvature
of the plate (s. Fig. 35):

M = −D
d2w

dx2
. (66)

In this equation, w is the vertical deflection of the plate and the constant of propor-
tionality D is called the flexural rigidity of the plate. The bending moment M is the
integrated torques on both sides of the load.

Eq. 66 may be coupled with a force balance equation that relates bending moments
to the vertical load q (s. Fig. 35) (s. Turcotte and Schubert 1982; Ranalli 1987). This
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is called the one-dimensional flexure equation and (neglecting horizontal forces) is:

D
d4w

dx4
= qx . (67)

There, qx is the vertical load as a function of horizontal distance x and has the units
of force per area: stress. Thus, if the distribution of loads is known, this equation
may be solved for either the deflection of the plate w or for its flexural rigidity D
(in N × m). Usually, the deflection is well known from bathymetric or topographic
observation and eq. 67 is used to derive the rigidity or “stiffness” of the plate. This
flexural rigidity is a direct function of the elastic material properties of an ideal elastic
plate of thickness h and is related to these by:

D =
Eh3

12(1− ν2)
. (68)

Thus, if the material constants E and ν are known and the flexural rigidity of a plate
was derived from modeling its shape using eq. 67, then this may be converted directly
into an elastic thickness of the lithosphere using eq. 68. Indeed, we only showed the
last equation to illustrate the definition of the elastic thickness of the lithosphere. All
descriptions of the bending of elastic plates are based on the integration of eq. 67, or
its two-dimensional equivalent.
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Figure 36: Distribution of loads during the elastic bending of lithospheric plates.

8.1.3 Application to the Lithosphere

Eq. 67 may be directly applied to describe flexural isostatic equilibrium, i.e. the
elastic bending of lithospheric plates under external and internal loads. When we do
this, we need to be aware of some important points:
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1. The flexural rigidity D must be interpreted correctly. Field observations tell us
that the rigidity of lithospheric plates is of the order of D ≈ 1023 Nm (± about one
order of magnitude) and laboratory experiments show that the material constants are
about E ≈ 1011 Pa and ν ≈ 0.25. According to eq. 68 these parameters imply that
the elastic thickness of the lithosphere h is only some tens of kilometers. Thus, the
elastic thickness of the lithosphere is much thinner than the lithosphere according to
thermal or mechanical definitions. The elastic thickness must be considered as the
theoretical thickness of a plate with homogeneous elastic properties. Considering that
the brittle strength of the upper crust as well as the ductile strength of the lower most
lithosphere are likely to be very small, it is only the central part of the lithosphere
that is dominated by elastic behavior.

2. The distribution of loads on the plate must be thought through. The load as a
function of distance qx as used in eq. 67 is the sum of a series of internal and external

loads that act upwards and downwards onto a plate. In order to clarify which

different forces act on the plate, it is useful to divide the plate under consideration
according to the scheme illustrated in the right hand part of Fig. 36. There, it may be
seen that the downward force exerted by the mountain range on the plate is given by
the vertical normal stress qext = ρcgH. This is the external or the positive load. This
load is opposed by a buoyancy force in the region of the displaced mantle. This is the
internal or negative load shown on Fig. 36 with the upwards arrows. This internal
load has the magnitude qint = (ρm − ρc)gw, where w is the deflection of the plate.
The net load that is applied to the plate is therefore:

q(x) = qext − qint = ρcgH(x)− (ρm − ρc)gw . (69)

Note that the load is here already expressed as a function of horizontal distance x.
If eq. 69 is inserted into eq. 67, this may be solved for w numerically or – for some
simple boundary conditions - also analytically.

8.1.4 Applications to the Oceanic Lithosphere

A series of elastic bending problem in the oceanic lithosphere may be well-described
with eq. 67 if two simplifying assumptions are made:

– 1. We assume that there are no horizontal forces applied to the plate.

– 2. We assume that the vertical load is only applied at a single location at the end
of the plate; i.e. there is no dependence of the load on x.

Based on the second assumption, and assuming that the downwards deflected region
is filled with water, eq. 69 simplifies to:

q = qa − (ρm − ρw)gw . (70)
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as illustrated on the very left hand edge of Fig. 36 (ρw is the water density). Eq. 67
simplifies to:

D
d4w

dx4
= −(ρm − ρw)gw . (71)

Eq. 71 describes a range of geological features surprisingly well and has the great
advantage that it may be integrated analytically for a range of geologically relevant
boundary conditions. After integration, the constants D, g, ρm and ρc often occur in
the following relationship (which we do not need to remember):

α =

(

4D

g(ρm − ρw)

)1/4

. (72)

α is called the flexure parameter of the lithosphere and is not the be confused with
the coefficient of thermal expansion, which we also abbreviated with α earlier on in
theis script.
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Figure 37: Shape of elastically bent plates. a Continuous plate loaded only at x = 0: the
left margin of the diagram (eq. 73). Only half of the plate is shown. b Broken plate, also
loaded only at x = 0 (eq. 75). The curves are labeled with the flexural rigidity of the plates
in Nm.

• Seamount chains The first example we want to discuss is that of a line-shaped
load of islands on a continuous plate of constant thickness. For appropriately formu-
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lated boundary and initial conditions (e.g. the load applies only at x = 0, symmetry
of the deflection so that dw/dx=0 at x = 0 and others) a solution of eq. 71 is:

w = w0e
−x/α (cos(x/α) + sin(x/α)) . (73)

There, w0 is the maximum deflection of the plate directly underneath the load and
w is normalized to this value (we can see from eq. 73 that w → w0 for x → 0).
Interestingly, the maximum deflection w0 is given by:

w0 =
qα3

8D
. (74)

Eq. 73 is a good approximation for the description of the water depth around the
Hawaii and Emperor Island chains (s. Fig. 37a). The equation is also historically
important, as is was one of the first models used to estimate the elastic thickness of
the lithosphere using the bathymetric surveys around Hawaii.

• Trench morphology The second example that may be described with the ap-
proximation of eq. 71 is the shape of oceanic lithosphere near trenches. There, the
loading of the subducting oceanic plate may be viewed as a line-loading by the mar-
gin of the upper plate. For this case, boundary conditions must be assumed that
describe a broken half plate which is subjected to a load at its end. For appropriately
formulated boundary conditions a solution of eq. 71 is:

w = w0e
−x/α (cos(x/α)) . (75)

The shape of plates as described by eq. 75 is illustrated in Fig. 37b. A comparison
of the curves shown on Fig. 37b with bathymetric measurements shows that most
subduction zones are steeper near the trench than what is described by the curves at
the left margin of Fig. 37b. It is interpreted that this indicates that subducted plates
are not only loaded by the upper plate but that convection in the mantle wedge and
other forces exert a additional torques on subducting plates.
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9 Unit: Plate Driving Forces: Potential Energy

Plate tectonic driving forces may be divided into two fundamental groups according
to the way they are transmitted:

– transmission by shear stresses,

– transmission by normal stresses.

On a plate tectonic scale, shear stresses clearly play a role in accretionary prisms.
There, deformation occurs because of traction along the upper side of the lower plate.
However, on a lithospheric scale shear stresses at both, the upper and the lower side
of the plate are largely negligible. Just like the west wind has not enough traction at
the surface of earth to move continents to the east, so does the mantle convection not
have enough traction on the underside to move plates. At mid ocean ridges we have
a series of arguments that it is NOT convection that moves the plates apart:

– The geometry of convection cells (mushroom shape) is impossible to reconcile
with the geometry of the mid-ocean ridges on a global scale.

– By definition the lithosphere involves only those parts of the outer earth where
forces can be transmitted.

– We know that dynamic topography produced by plumes creates up to 1 km of
topography, whereas mid-ocean ridges are all at the same water depth, except
in Iceland, where we know of a plume.

– From experimental petrology we know that decompression melts that are cre-
ated during 600 km of decompression (the vertical scale of plumes) produce the
equivalent of 20 km thick oceanic crust. In contrast, we know that oceanic crust
is only 5-7 km - consistent with small scale convection on the lithospheric scale.

Sooo - if it is not mantle convection that drives plate motions, what is it then?

9.0.1 Potential Energy

Practically all important plate tectonic driving forces find their origin in differences
of the potential energy of different parts of the earth (Turcotte 1983). In this section
we explain what we understand with the term potential energy in a plate tectonic
context. We will return to this concept again in the sections 9.1 and 9.2.

In sect. 7.1 we have shown that the vertical normal stress at a given depth in the
crust z is given by the product of density, gravitational acceleration and the height,
or thickness of the vertical rock column above it. This vertical normal stress is the
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vertically acting force per area. It may be calculated by integrating ρg between 0 and
z, as we did in eq. 43. If the density over the thickness z remains constant, then this
is simply ρgz. This term has the units of Pa or kg s−2 m−1 or Jm−3. We can see
that stress has the same units as energy per volume.

This quantity can also be interpreted as the potential energy of a cubic meter of
rock at depth z. If we want to know the potential energy not of a single cubic meter,
but that of a whole body, for example that of a mountain range, then we need to
integrate this potential energy per cubic meter over the lateral and vertical extent
of the range. Fortunately, it is usually sufficient to know the potential energy per

area, i.e. that of a complete vertical column, but only for one square meter of area.
Using this potential energy per area we can compare different regions on the globe,
for example two neighboring lithospheric columns of different thickness and density
distribution. In the following we will represent the potential energy per area with
Ep. In order to determine Ep at depth z we simply need to sum up (i.e. integrate)
the vertical stresses in the lithospheric column of interest between the surface (which
usually is z=0 in the reference frame we use) and the depth of interest z:

Ep =

∫ z

0

σzzdz =

∫ z

0

∫ z

0

ρ(z)gdzdz . (76)

Very often the “depth of interest” is the isostatic compensation depth. If the density
is independent of depth, then eq. 76 may be simplified to give:

Ep =

∫ z

0

σzzdz =

∫ z

0

ρgzdz =
ρgz2

2
. (77)

This integral corresponds to the gray shaded region in Fig. 38b. We want to remember
that Ep has the units of energy per area and is, therefore, strictly speaking, no energy
as such.

9.0.2 Horizontal Forces Arising from Potential Energy Variations

In a static, non-deforming lithosphere the horizontal and vertical normal stresses have
the same magnitude (see Fig. 38). It is true that:

σzz = σxx = σyy . (78)

The sum of all vertical stresses integrated over the thickness of a plate is the potential
energy of the plate per area. Since horizontal and vertical stresses are the same, this
potential energy per area is equivalent to the force exerted by the lithosphere onto
its surroundings, per meter length of orogen. If two neighboring vertical lithospheric
columns have the same potential energy per unit area, then they also exert equally
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Figure 38: Density ρ and vertical normal stress σzz as a function of depth z. The value σzz

is the vertically integrated density, times acceleration. Thus, the curve in b corresponds
to the gray shaded region in a. The row of little unity cubes next to a illustrates how the
vertical stress increases with depth. The column of cubes next to b illustrates that the
horizontal force exerted by the column on its surroundings is given by the sum of all vertical
stresses. This corresponds to the gray shaded area in b.

large horizontal forces onto each other and there is no “net force” between them.
However, if they have different potential energies per area, then this potential energy
difference between the two plates may be interpreted as the net force Fb that is exerted
by one column onto the other in the horizontal direction and per meter length of
orogen. This net force arising from potential energy differences is also called horizontal

buoyancy force (somewhat cumbersome) or gravitational stress and it is important to
remember that it has the units of force per meter length of orogen. This potential
energy difference may be written as (s. Fig. 39):

∆Ep = Fb =

∫ zK

0

∫ zK

0

ρA(z)gdzdz −
∫ zK

0

∫ zK

0

ρB(z)gdzdz . (79)

There, zK could be any depth, but for many purposes it is useful to assume that it is
the same isostatic compensation depth we used on p. 50. Below this depth there is
no density differences between the vertical columns A and B (s. eq. 42). ρA(z) is the
density of profile A as a function of depth z.

If density is a continuous function of depth, then eq. 79 may be usually integrated
without too much trouble. However, in the lithosphere, the density distribution has
(a the least) a discontinuity at the Moho so that it may be necessary to split the
integral in eq. 79, even for very simple assumptions on the density distribution in the
lithosphere.

The importance of the density distribution in the lithosphere for the potential
energy may be illustrated nicely with an interesting example. Fig. 39 shows two
columns in isostatic equilibrium. The two columns have the same isostatically sup-
ported surface elevation, because they are made up of sections of the same densities
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and thicknesses. However, they have different potential energies because in column
B the dense part lies up high. Potential energy does not only depend on thickness
and density, but also on the distribution of density with depth. Thus, there is a net
buoyancy force between the two columns shown in Fig. 39. This net force is exerted
by column B towards column A.

A B

3

0

zl

zc r

1r

2r

3r

1r

H HA B=

E Ep p< BA

Figure 39: Schematic cartoon showing two columns in isostatic equilibrium (ρ1 < ρ2 < ρ3).
The surface of both columns has the same elevation above the liquid of density ρ2, because
both bodies consist of equally thick sections of the densities ρ1 and ρ3, i.e. they have the
same weight. However, column B has a much higher potential energy per unit area than
column A, because the distribution of density is different. In column B the high density part
of the section lies higher. As a consequence, B exerts a net force towards A.

9.0.3 Force Balance Between Mountains and Foreland

In this section we estimate the forces exerted by a mountain range onto its foreland
because of their potential energy difference (Fig. 40). For this, we will follow the logic
of Molnar and Lyon-Caen (1988) and also use their choice for the vertical axis of the
cross section. We assume an origin at the Moho and measure the vertical direction
positively upwards as illustrated in Fig. 40b. This choice for the vertical axis helps
the intuitive understanding if the integration of eq. 79, as one of the integration limits
is always zero. However, note that the results are independent of the chosen reference
frame as we do not calculate absolute potential energies, but only potential energy
differences between two neighboring columns. Thus, as long as we choose the same
coordinate system for the two columns that are to be compared, it does not matter
which reference frame we pick.

We begin by calculating the potential energy per unit area of the foreland following
the logic of Molnar and Lyon-Caen (1988) and the geometry shown in Fig. 40. We
can find this by integrating eq. 76. For the undeformed lithosphere in the foreland
the potential energy above the Moho is simply:

Eforeland
p = ρcgz

2
c/2 . (80)
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Figure 40: Cartoon contrasting the distribution of vertical stresses in mountain ranges
relative to their foreland. a The thickness of the crustal root is w, the surface elevation
relative to the reference lithosphere in the foreland H. In isostatic equilibrium it is true
that: Hρc = w(ρm−ρc) = w∆ρ. In b the vertical stresses are drawn for the mountain range
and the foreland. The dark shaded area between the two stress curves has the units of stress
× meters or force per meter length of orogen exerted by the range onto the foreland. It
corresponds to the potential energy difference between the mountain range and the foreland.

Correspondingly, the potential energy of the thickened crust relative to the Moho is:

Erange
p = ρcg(H + zc)

2/2 + ∆ρgw2/2 . (81)

where ∆ρ=(ρm − ρc) and the thicknesses H, Zc and w are as labeled on Fig. 40.
The first term in the equation above is simply the potential energy of the thickened
crust above the chosen origin at the Moho of the undeformed lithosphere. the second
term is in the negative z direction, but the density contrast is also negative (as it acts
as a buoyant force) providing in total a positive contribution to the potential energy.
The potential energy difference per unit area is given by the difference of eq. 80 and
eq. 81 (s. eq. 79). It is:

∆Ep = Fb = Erange
p − Eforeland

p

= ρcgH
2/2 + ρcgHzc + ∆ρgw2/2 . (82)

Eq. 82 may be simplified because we assume that both, mountain range and foreland
are in isostatic equilibrium. The isostasy condition states that: ∆ρw = Hρc. Using
this we can simplify eq. 82 to:

∆Ep = Fb = ρcgH (H/2 + zc + w/2) . (83)
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The force Fb corresponds to the dark shaded region in Fig. 40b. It is the difference
between the vertically integrated vertical stresses σzz of two vertical columns in the
mountain range and in the foreland, respectively (Tapponier and Molnar 1976). For
a 3 km high mountain range with a 30 km root, eq. 83 gives a force Fb of the order
of 3–4 ·1012 Nm−1. We will see that this number is comparable with the forces applied
to and exerted by mid ocean ridges.

Despite its simplicity, eq. 82 may be used to draw some very fundamental conclu-
sions. For one, we can see that the third term is significantly larger than the first
term. Thus, the potential energy difference between two mountain ranges of the same
elevation becomes larger if the compensating root is thicker. For example, a 100 km
thick root of a mountain range made up of low density mantle material contributes
significantly more to the potential energy of a range than a 60 km thick root of crustal
material. We can also see from eq. 82 that the potential energy of a mountain range
grows with the square of both the surface elevation and the thickness of its root. The
work that must be done to increase the surface elevation of a mountain range by one
meter increases therefore as the mountain range gets higher (Molnar and Tapponier
1978). This is the reason why mountain ranges do not grow infinitely on this planet
and have a limiting elevation.

9.1 Forces in Oceanic Lithosphere

The forces exerted by oceanic lithosphere onto the continents around them are consid-
ered to be the fundamental driving mechanism for plate tectonic motion (McKenzie
1969b). There are two important driving forces in oceanic lithosphere:

9.1.1 Ridge Push

Mid-oceanic ridges have a high topography and a high potential energy relative to
the average oceanic lithosphere. This potential energy is one of the more important
(and certainly best known) plate tectonic driving forces. While strictly speaking the
mid-oceanic ridge applies a torque to the plate, we will neglect here the curvature of
Earth and continue using the term “ridge push”. It is important to understand that
ridge push finds its origin in the high potential energy of the ridge, rather than in the
frictional stresses between an outward welling mantle plume and the oceanic plate as
drawn in Fig. 7a.

The ridge push force per meter length of ridge (equivalent to the potential energy
of the ridge per unit area) may be calculated with eq. 79, using similar assumptions
to those we have made when designing a model to explain the water depth of the
oceans (s. Fig. 32). The density of oceanic lithosphere must be expressed in terms of
temperature (eq. 48) and temperature as a function of depth (eq. 27; s. Turcotte and
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Figure 41: The force exerted by
mid-oceanic ridges onto the
surrounding plate per meter
length of ridge, shown as a
function of age of the oceanic
lithosphere. Calculated with
eq. 84.
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Schubert 1982; Parsons and Richter 1980). Then - using the half space cooling model
- it may be shown that the ridge push force is a function of the thermal profile through
the oceanic lithosphere and therefore of age. Without reiteration the derivation of
the ridge push force here, we simply state that it is given within this model by the
equation:

Fb = gρmαTlκt

(

1 +

(

ρm
ρm − ρw

)

2αTl

π

)

≈ 1.19 · 10−3t . (84)

All parameters of this equation are explained in sect. 7.1. From eq. 84 we can see that
the ridge push force is a linear function of age of the oceanic lithosphere (Fig. 41).
As such it is different from water depth which - within this model is described by
a square root function of age (Fig. 33). The numerical value of the proportionality
constant between age and force in eq. 84 (1.19 · 10−3) is derived using the following
constants: Tl =1200◦C; ρm =3200 kgm−3; ρw =1000 kgm−3; α = 3 · 10−5 K−1

and κ=10−6 m2 s−1. Fig. 41 shows that ridge push is about an order of magnitude
smaller than the integrated strength of continents at normal orogenic strain rates.
Thus, we may conclude that ridge push alone is insufficient as the principal plate
tectonic driving force.

9.1.2 Slab Pull and Trench Suction

Old oceanic lithosphere is denser that the underlying asthenosphere and it has there-
fore a negative buoyancy and it wants to sink. However, because oceanic lithosphere
is very strong and stiff, it cannot immediately do this as soon as it reaches this critical
age where its density becomes large compared to that of the underlying asthenosphere.
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Rather, the oceanic plate “glides” along the surface of the asthenosphere until this
gravitationally unstable configuration is brought out of balance and a subduction zone
forms. Once the edge of such an old oceanic plate has begun to subduct, it drags the
remainder of the plate behind it. This is what is called slab pull. Such subduction
processes may cause small scale convection in the upper mantle. This convection
occurs predominantly in the wedge shaped region between the subducting and the
upper plate. Once such a convection system is set up, it may actually drag both the
upper plate and the subducting plate into the subduction zone. This is what is called
trench suction. Slab pull is gravitationally induced, simply because the dense oceanic
lithosphere wants to sink into the less dense upper mantle. In fact, the slab pull force
is reinforced by the fact that the density of the down-pulling slab increases signifi-
cantly once it has passed the olivine-spinel-transition at roughly 400 km depth. The
magnitude of slab pull is roughly 1013 Nm−1 (s. Turcotte and Schubert 1982). Thus,
slab pull is about an order of magnitude larger than ridge push. However, it is likely
that slab pull is being counteracted by frictional stresses of about the same magnitude
between the sinking plate and the surrounding asthenospheric mantle. Thus, the net
force exerted by subduction zones onto the foreland need not be very large.

9.2 Forces in Continental Plates

Inside the continents, plate tectonic driving forces arise predominantly from lateral
variations in the density structure, which cause lateral variations in potential energy.
When we discussed Fig. 40 we have already estimated the magnitude of these forces
for a plate of constant density but variable thickness (eq. 82). In this section we
want to refine these estimates. Fig. 42 illustrates two examples of potential energy
differences between two lithospheric columns. Similar to Fig. 40 this potential energy
difference is given by the shaded region between the two curves for vertical normal
stress as a function of depth. This area corresponds to Fb in eq. 79 and may be
interpreted as the net force exerted by one column onto the other per meter length of
orogen and averaged over the thickness of the lithosphere (horizontal buoyancy force).

The considerations of Fig. 42 may be quantified by integrating eq. 79 and using sim-
ple descriptions for density as a function of depth. If we assume a simple lithosphere
of two layers (a crust and a mantle lithosphere) and assume a linear thermal profile in
the lithosphere so that the density due to thermal expansion may be described with
eq. 50, then the lateral buoyancy force is described by:

Fb

ρmgz2c
=

δ(1− δ)

2
(f2

c − 1)− αTl

6(zc/zl)2
(

f2
l − 1− 3δ(fcfl − 1)

)

+
α2T 2

l

8(zc/zl)2
(1− f2

l ) (85)
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Figure 42: Illustration of vertical stresses and potential energy differences between two
neighboring lithospheric columns. Vertical normal stress is plotted as a function of depth.
The shaded region between the two curves is the potential energy difference per area between
the two adjacent columns. In a this difference is positive in the upper part of the lithosphere
(light shading) but negative in the lower part (dark shading). This means, that there is a net
force acting from the right hand column towards the left hand column, while this net force
is directed towards the right in the lower part. Because both shaded regions are roughly
of the same area, there is practically no net force between the two columns, averaged over
the thickness of the lithosphere. In b the entire right hand lithospheric column exerts a net
force onto the left hand column.

(Turcotte 1983; Sandiford and Powell 1990). All parameters in this equation are the
same as those we used in eq. 56 to calculate the elevation of mountain belts in isostatic
equilibrium but the definition of δ differs from that of Sandiford and Powell (1990)
and the way eq. 85 is written here differs therefore slightly from theirs as well. Here
δ is the density ratio of crust and mantle lithosphere δ = (ρm − ρc)/ρm, g is the
gravitational acceleration, Tl the temperature at the base of the lithosphere and α is
the coefficient of thermal expansion and fc and fl are the vertical thickening strains
of the crust and the lithosphere, respectively. Lateral forces calculated with eq. 85
are shown in Fig. 43.
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Figure 43: Diagram of lithospheric thickening strain fl plotted against crustal thick-
ening strain fc and contoured for potential energy difference per area (equivalent to:
“horizontal buoyancy force per meter” or: “lateral force”). The potential energy
difference is always that between any point in fc-fl space and the reference litho-
sphere at fc=fl = 1. The diagram was calculated with eq. 85 and is contoured for
Fb in 1012 Nm−1. Other assumptions are: ρm = 3200 kgm−3; ρc =2750 kgm−3;
α = 3 · 10−5; zc = 35 000 m; zl = 125 000 m; Tl = 1200 ◦C. The curvature of the
contours arises because of the quadratic dependence of potential energy on thickness.
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10 Unit: Dynamic Evolution of Orogens

Let us begin with an intuitive way to formulate a force balance for orgens that we can
use without too much algebra. For this we divide (very loosely and not very precisely)
the forces that keep orogens in mechanical equilibrium into three groups:

1. Driving forces: Driving forces are forces applied from the outside to an orogen, for
example ridge push or slab pull. In the following we abbreviate these forces with
Fd. Some of these forces were already discussed in sect. 9.1.1.

2. Internal forces: These are the forces internal to the lithosphere which resist the
driving forces and are limited by the inherent strength of the rocks in the litho-
sphere. These are the forces discussed in detail in sect. ??. It is the vertically
integrated strength of the lithosphere, which has the units of force/meter and was
explained on p. ??. We represent this in the following with Fl.

3. Potential energy: Forces resulting from the potential energy difference of an oro-
gen relative to its surroundings are also called gravitational stresses or: horizontal
buoyancy forces. We denote those in the following with Fb.

This division is not completely sound, as many of the plate tectonic driving forces
themselves are also caused by potential energy differences and many of the other
forces are also coupled. However, it helps us to understand the balance of forces in
orogens which we can write as:

Fl = Fd − Fb . (86)

Basically this equation states that the strength of the lithosphere balances the effective
force applied to the orogen, with the “effective force” being the difference between the
external driving force causing convergence and the buoyancy force causing extension.
We will discuss this equation in some detail in a few pages. However, first we want to
discuss the process of building up potential energy in an orogen in some more detail.
Note also that all orogenic forces are usually not given in the units of force (N), but
that they are discussed in terms of force per meter (Nm−1) and that the unit of “force
per meter” is equivalent to the units of “potential energy per area” or the units of
“stress × distance”.

• Evolution of orogens in the equilibrium of forces The force balance we have
discussed in the last paragraphs may be summarized in the following equation:

Feff = Fd − Fb . (87)
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which we already introduced in eq. 86. There, Fd is the tectonic driving force permeter
length of orogen, Fb is the gravitational stress times the thickness of the lithosphere.
Fb is also called horizontal buoyancy force, or: extensional force or: potential energy

per area. The difference between the driving force and the horizontal buoyancy force
is the effective driving force applied to a continent Feff . Eq. 87 is often referred
to as the “orogenic force balance”. Note that – although this equation is called a
“force balance” – it really balances parameters that have the units of force per meter
or stress × meter. Eq. 87 is often also written as:

Feff = Fd − Fb = Fl . (88)

There, Fl is the vertically integrated strength of the lithosphere in Nm−1 and corre-
sponds to the area under the failure envelope of the lithospere discussed in the 1st
unit of this course (Fig. 3c and 4c. Note that Fl can only equal the left hand side of
the equation if the orogen is deforming (i.e. at the point of failure). When Feff < Fl,
there is no deformation. However, we assume that active orogens are always on the
point of failure so that Feff = Fl. The bulk of the lithosphere is dominated by vis-
cous deformation mechanisms where deviatoric stress and strain rate are proportional.
Thus, an orogen will always deform with a strain rate that is just large enough so
that the vertically integrated flow stresses balance exactly the effective driving force
(per meter). If the strain rate would be lower than this, the integrated strength of
the lithosphere would be smaller than the effective driving force (per meter) and the
deformation rate would increase. Conversely, if the strain rate would be larger than
the effective driving force, then the strength would be too large for any deformation to
occur. Note also that, within eq. 88, the integrated failure strength of the lithosphere
is zero when the effective driving force is zero.

Because of the balance described by eq. 87 it is possible to solve this equation
for strain rate of an orogen, if a relationship is assumed that relates stress to strain
rate (e.g. a viscous flow law). Such an analysis has been done by a number of
authors and provides insights into the basic principles of the mechanical evolution of
collisional orogens. If the tectonic driving force is assumed to be constant, then such
orogenic evolutions track towards an equilibrium where Fb = Fd and Feff = Fl = 0
(Fig. 44). Thus, collisional orogens are self limiting. As such, collisional orogens
are fundamentally different from extensional orogens, which are not necessarily self
limiting.

• The mean strength of the lithosphere Differences in surface elevation of the
continental lithosphere can only be created if the lithosphere has a finite strength.
That is: if the horizontal and vertical principle stresses are of different magnitude
(McKenzie 1972; Molnar and Lyon-Caen 1988). If the were no stress differences, then
the surface of a plate subjected to lateral forces from the outside would lift everywhere
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Figure 44: Schematic
illustration of the evolution of a
collisional orogen subject to the
force balance of eq. 88. Surface
elevation and crustal thickness
converge to a steady state when
the magnitude of the horizontal
buoyancy force approaches the
tectonic driving force
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by the same amount; like water between two converging sides of an aquarium. There
would be no mountain ranges and the surface of the continents would look rather
boring. Conversely, it is possible to use the thickness and surface elevation of a
mountain belt to estimate the mean strength of the lithosphere (Molnar and Lyon-
Caen 1989) (see Unit 11).

Consider a mountain range which collapses under its own weight and to which
there is no forces applied externally. then, there is no external driving force and we
can reformulate eq. 88 to:

Fb = −Fl . (89)

The left hand side of eq. 89 is the potential energy difference between mountains and
foreland per unit area and was evaluated in eq. 83 or, somewhat more precisely, with
eq. 85 (s. also Fig. 40). The right hand side of eq. 89 is the integrated strength
of the lithosphere. It is the product of the mean differential stress of the extending
mountain range and its thickness. Thus, the elevation contrast between mountain
belts and their foreland may directly be used to provide an upper bound on the mean
strength of the lithosphere.

According to the estimates of Molnar and Lyon-Caen (1988), the surface eleva-
tion contrast between the Tibetan Plateau and the Indian foreland indicates a mean
strength of the Asian lithosphere of σd =69 MPa (see eq. 83). For the Altiplano in
the Andes similar estimates indicate a mean strength of σd =52 MPa. This mean
strength is estimated purely on the basis of topography differences and is therefore
quite a sound estimate. If we acknowledge that some parts of the lithosphere will
be significantly “softer” than this value (e. g. the uppermost and lowermost parts of
the crust), then there must be other parts of the lithosphere that are significantly
“stronger” than this value to maintain the mean value given by these estimates.



Geodynamik in Innsbruck: Unit 10 79

These considerations provide a strong argument for the existence of a significant
shear strength of parts of the lithosphere.

We have now discussed the force balance of orogens in a qualitative way and have
seen how the orogen will converge to a staeady state as the buoyancy forces that
oppose the driving forves get larger. With our now-gained knowledge on potential
energy we will quantify these considerations in this section.

• Building up potential energy In sect. 9.0.1 we showed that the potential energy
of orogens grows with the square of the surface elevation and with the square of the
thickness of the orogenic root (eq.81). Thus, it takes significantly more energy to
increase the surface elevation of a high mountain range by one meter than it takes
to increase the elevation of a low range by the same amount (Molnar and Tapponier
1978). As a consequence, the height of a mountain range and the thickness of an
orogenic root are limited, if the driving force is a constant. This limiting elevation is
reached when the potential energy of the range per square meter area is exactly as
large as the tectonic driving force per meter length of orogen. Then, a steady state
equilibrium of the forces is reached.

Figure 45: a Cartoon of a collisional orogen showing crust of normal thickness on the
left and a mountain range on the right. Further displacement of the crust from left to
right is compensated in b by further thickening and in c by lateral growth of the range. The
difference in deformation style between b and c causes a significant difference of the potential
energy of the mountain range (see eqs. 90 to 93) (s. also Fig. 40; after Molnar and Lyon-Caen
1988).
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In order to understand how this equilibrium is reached, consider Fig. 45a, which
illustrates a very simple model orogen. The left of this diagram shows normal thick
crust of the thickness zc and the density ρc. On the right, this diagram shows an
elevated mountain range in isostatic equilibrium of the elevation H. The diagram is
equivalent to Fig. 40. The difference in potential energy between the two mountain
range and the foreland per square meter of area is given by eq. 82 and 83. Let us also
recall that ∆Ep is a potential energy per area and has the units of Jm−2 and may
also be interpreted as the mean net horizontal force exerted by the mountain range
onto the foreland per meter length of orogen.

By analogy, the potential energy per meter length of orogen may also be interpreted
as the product of the potential energy per area times the width of the mountain
range l. From eq. 83 we can derive directly that:

∆Ep,m−1 = ρcgHl (H/2 + zc + w/2) . (90)

The subscripts are used to emphasize that we are dealing with the units of potential
energy difference per meter , while the ∆Ep that we used in eq. 82 and eq. 83 has
the units of potential energy difference per area. Further growth of the mountain
range may now proceed either in the vertical direction (Fig. 45b) or in the horizontal
direction (Fig. 45c). If the crust inside the orogen is doubled in thickness, then the
potential energy of the range per meter grows to the following value:

∆Ehigh
p,m−1 = 2ρcgHl (H + zc + w) . (91)

If the growth of the mountain range is by doubling its width (at constant thickness,
as shown in Fig. 45c), then the potential energy per meter growth to the following
value:

∆Ewide
p,m−1 = 2ρcgHl (H/2 + zc + w/2) . (92)

The difference of the potential energy increases between the two deformation styles
is given by the difference between eq. 91 and eq. 92:

∆Ehigh
p,m−1 −∆Ewide

p,m−1 = ρcgHl (H + w) =

(

ρcρm
ρm − ρc

)

glH2 . (93)

The last simplification in the equation above was performed using the isostasy condi-
tion ∆ρw = Hρc that we also used in eq. 83. Eq. 93 shows us that it takes significantly
less energy to thicken the crust in the foreland of a mountain belt (i.e. to widen the
range) than it takes to increase the thickness of the crust in the mountain range itself
(i.e. to increase the elevation of the range). Because of this, it is not necessary that
convergence between two plates will stop when the gravitational extensional force Fb
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has reached the same magnitude as the tectonic driving force Fd acting towards the
orogen. It is just that the convergence cannot be compensated anymore by vertical

growth of the range, but will be compensated by lateral growth of the range towards
the fore- or hinterland. Thus, active deformation in the range itself will come to
a halt, the zone of active deformation propagates into the fore- and hinterland. A
plateau will form in the center. In the process, the transition zone between the region
where the largest principle stress is oriented horizontally and the region where it is
oriented vertically will shift also towards the foreland.

10.0.1 Mechanics on Vertical Sections

Extension

Shortening

Figure 46: Distribution of horizontal and vertical stresses in a simple collisional orogen.
If the topographic gradients at the surface and the base of the lithosphere are small, then
the horizontal and vertical stresses σxx and σzz are parallel to the principal stresses. The
horizontal stresses are constant across the orogen. However, the vertical stresses at a constant
crustal level are higher in the orogen and smaller in the foreland. Thus, the largest principal
stress in the foreland is given by σxx, while it is given by σzz in the orogen.

In the discussion of eq. 93 we have shown that the stress field in an orogen may
change over time, even if the far field plate boundary stresses remain constant. Here
we illustrate this in some more detail by looking at the changes of the stress state
across a mountain belt. In this discussion we follow the logic of Dalmayrac and Molnar
(1981) as well as Molnar and Lyon-Caen (1988).

If the shear stresses at the base of the lithosphere are negligible, then the horizontal
forces in a simple orogen (simplified as shown in Fig. 46) are constant, regardless of
thickness of the plate or surface elevation (Artyushkov 1973; Dalmayrac and Molnar
1981). In other words, the product of the mean horizontal stress σxx and the thickness
of the plate remains a constant. Thus, if the stresses are a similar function of depth
in different parts of the orogen, then the horizontal stress σxx is constant at any
one depth across the orogen. This also implies that mountain ranges and plateaus
transmit horizontal forces from the foreland to the hinterland of the orogen without
changing their magnitude. On Fig. 46 this is indicated by the horizontal white arrows
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that are of the same size everywhere across the orogen.
This logic does not apply to the vertical stresses. Vertical stresses are the largest

in regions where the overlying rock column is the thickest and the smallest where it is
the thinnest (s. Fig. 40). As a consequence, the stress distribution in an orogen may
be like that shown in Fig. 46. In the foreland (on the left in this figure) the vertical

stress is smaller than the horizontal stress. The region is thickening, for example by
thrusting. In the mountain belt (strictly: in the region of high potential energy, s.
sect. 9.2), the largest principle stress is the vertical stress. The region is extending.
In short: although the horizontal stress on Fig. 46 is everywhere the same, there is
thickening in parts of the Figure and extension in others. On Earth, there are two
orogens that have reached mechanical equilibrium and have formed plateaus. The
Altiplano and the Tibetan Plateau. On both the transition from compression (in the
foreland) to extension (on the plateau) can be observed (Fig. 47).

The lateral qualitative change in the deformation regime is not caused by changes
in the horizontal- but changes in the vertical stress. This also explains why the obser-
vation of extension in mountainous regions must not occur because the surrounding
plates are moving apart. The Tibetan Plateau is an example for such a situation: al-
though the plateau is extending laterally, there is thrust tectonics in the surrounding
regions.

Figure 47: Fault plane solutions for the two great plateaus on this planet. a The Tibetan
Plateau as the consequence of the India – Asia collision and: b the Altiplano as the conse-
quence of the collision between the Pacific and the South American plates. Note that the
majority of the fault plane solutions at low elevation regions indicate compression, while
those on top of the plateau indicate largely extension.
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Appendix: Working on a Spherical Surface

The earth is nearly a sphere and many aspects of the geometry and the mechanics
on a sphere are different from its Cartesian equivalent. In this section we discuss
some aspects of spherical coordinates that may need to be considered when solving
geodynamic problems on very large scales.

a b

Figure 48: Illustration of the ping pong model. a Slab contours for the Aleutian slab
and the Kuril-, Japan- and Mariana slabs. Depth contours are shown every 50 km from
0 km to 700 km (in the Japan Trench). Data from Gudmundsson and Sambridge (1998),
(http://rses.anu.edu.au/seismology/projects/RUM). b The difference between a flat and a
curved surface of the earth. The maximum deviation of a curved surface from a flat surface,
H, is given from geometric relationships by H = R−

√
R2 − r2. For r = 1000 km as shown

here and the value for R, the deviation is H ≈80 km

A famous example for a problems that can not be described on a flat earth is the
shape of long subduction zones. On a flat earth, the trace of a subduction zone should
be linear, just like the linear trace of the curvature of a sheet of paper hanging off
the edge of a table. In contrast, the trace of many deep ocean trenches is curved
along the surface of earth. For example, the Aleutian, Kurile, Japan, Izu Bonin and
Mariana trenches from northeast to southwest) along the Pacific ring of fire, the South
Sandwich Trench east of South Georgia or the Java (Sunda) Trench south of Sumatra
and Java are all curved concave towards the subduction direction in plan view. This
is often explained with the ping pong ball model. This model compares the curvature
of trenches on the surface of the earth with the curvature of the indentation edge on a
dented ping pong ball. If the indented part of a ping pong ball is not deformed in itself,
then this edge forms a small-circle on the surface of the ball. Exactly this is observed
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Figure 49: Six plates on a flat
surface. The relative motions
of some plates are shown by the
arrows. However, the relative
motions of plates C and E, D
and E, B and E, B and F as
well as that between A and F
are completely unconstrained
by the shown relative motions

A

B
C

D

E F

in subduction zones. In fact, the model can be used to predict the subduction angle
(2 θ), which should be given (according to Fig. 48) by:

sin(θ) =
r

R
(94)

where r is the small circle radius and R is the radius of earth. Most of the small circle
radii of subduction zones on earth correspond well with the subduction angle predicted
by eq. 94 (s. Isacks and Barazangi 1977). However, the subduction angles may also
depend on a large number of other parameters, for example whether subduction occurs
in or against the direction of convection in the asthenosphere (Doglioni 1993). In
fact, it has been suggested that the earths rotation causes a westward drag between
lithosphere and asthenosphere which also influences the direction and steepness of
subduction zones (Doglioni et al. 1999). Other plate scale examples for the influence
of the curvature on plate motions are the transform faults in the oceanic lithosphere
(Fig. 51).

10.1 Geometry on a Sphere

On a spherical surface the position of a point is described by its longitude φ, and
latitude λ (Fig. 50). As with time, spherical geometry is one of the few branches in
science where the duo-decimal system is still in use: a right angle has 90 degrees and
longitude and latitude around the globe are divided into 360 degrees. (The use of 100
degrees for a right angle was attempted by the introduction of “new degrees” but has
not found footing in science). Every degree of longitude is described by a great circle
which goes through the geographic poles. These great circles are called Meridians.
Great circles are lines on the surface of a sphere that are defined by the intersection
of a planar surface through the center of the sphere, with the surface of that sphere.
Meridians are therefore a special kind of great circle, namely one that goes through
the poles. Small circles are defined as intersections of all other planar surfaces with
the surface of a sphere. 180 of the 360 Meridians are numbered west of Greenwich and
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the other 180 east of Greenwich, which has been internationally agreed upon to be
the reference for longitude. Each degree of latitude is defined by a small circle parallel
to the Equator and at right angles to the axis that connects the poles. 90 degrees of
latitude are north of the equator and 90 are south. Note that there is a total of 360
Meridians, but only 180 degrees of latitude. The spacing of the degrees of latitude
is chosen so that they divide the Meridians into 360 sections of equal length. Thus,
the distance (along the surface of the earth) between degrees of latitude is constant
everywhere on the globe, while the distance between degrees of longitude is largest
at the equator and zero at the poles. For more detailed description of locations on a
spherical surface, every degree is divided into 60 arc minutes and every arc minute into
60 arc seconds. Just to make things worse, the duo-decimal system is often coupled
with the decimal system: Geographic locations are often described by degrees and
decimals. That is, tenth and hundredths of degrees are given, rather than arc minutes
and arc seconds.

inclination

Figure 50: Definitions of important lines and angles on a spherical surface. The geographic
longitude φ of point X is west of Greenwich. The white dot is the magnetic pole. The
angle between magnetic and geographic north (labeled at point X) is the declination and
the plunge angle of the magnetic field lines is the inclination

The circumference of a great circle on earth is about 2Rπ ≈ 40 000 km. (If it were
exactly 40 000 km, then the radius of the earth would have to be R = 6366.2 km;
in reality the equatorial radius is 6 378.139 km and the polar radius is 6 356.75 km).
In fact, one meter was long defined as the 1/40 000 000 part of the circumference of
earth. One degree of longitude at the equator (and all degrees of latitude) is therefore
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about 40 000/360 ≈ 111 km. On small circles north and south of the equator, the
distance between full degrees of longitude, l, decreases with the cosine of the latitude:

l ≈ cos(λ) · 111 . (95)

In eq. 95 we have used the approximate value for one degree of longitude at the
equator. Correspondingly, the small circle radius of each small circle of constant
latitude shrinks with the cosine of the latitude: r= cos(λ)×R, where R is the radius
of earth. One arc minute of latitude is defined as one nautical mile which is ≈ 1.8
km. Along the equator, distances between degrees of longitude and latitude are of
equal length.

Other important lines on spherical surfaces are rhumb lines (also called loxodromes).
These are lines that intersect degrees of latitude and longitude at constant angles.
Rhumb lines are easy to follow, for example when setting constant course on a ship,
but they form spiral-shaped curves on a sphere and they are not the shortest connec-
tion between two points (Fig. 50). The angle between magnetic north and the lines of
longitude (geographical north) is called the magnetic declination. The vertical angle
between the normal to the Geoid surface and the magnetic field lines is called the
magnetic inclination.

10.2 Kinematics on a Sphere

On a flat surface, velocity v and speed have the units of m s−1. Velocity is a vector and
speed is a scalar quantity. For example, the Indian Plate has a speed of 0.05 m s−1,
but a velocity of 0.05 m s−1 moving north. The equivalent to velocity on a spherical
surface is the angular velocity w. w has the units of radian per time, which is s−1.
The axis that is perpendicular to the planar surface swept over by angular motion is
called the pole of rotation or Euler pole (Fig. 51). The velocity that corresponds to a
given angular velocity depends on the distance of the angular motion from the pole
of rotation. Acceleration in a straight line is the change of velocity over time and has
the units m s−2. Correspondingly, the angular acceleration has the units of s−2. The
differences in units between linear velocity and angular velocity has lead to a lot of
confusion in the literature. For example, a constant rate of plate motion with a
constant angular velocity will cause differences in the rates of relative plate motions
along the plate margin. The relative plate motion rate depends on the small circle
radius of the velocity vector (Fig. 51). In fact, even qualitative changes from divergent
plate motion to convergent plate motion may occur along a plate margin because of
this (compare Fig. 49 and 51). This is spectacularly illustrate by the transform faults
on the ocean floors which solve the space problem caused by the angular rotation.
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Figure 51: Illustration showing the meaning of rotation poles. The arrows are vectors
showing the direction and magnitude of relative motion of the two plates (shaded regions).
The thick line connecting the arrow heads is the new plate margin after some time. The axis
of the earth is only shown to emphasize that it has nothing to do with the rotation pole of
plate motion. The enlargement illustrates the origin of transform faults

10.3 Mechanics on a Sphere

Plate tectonic forces are often described in the literature as “torques” (e.g. Sandiford
et al. 1995). For example, ridge “push” is a force, while many authors rather use the
term ridge “torque”. Strictly speaking, we should only use torques to understand the
mechanics that cause plate motion on the earth’s surface as plates do not move in a
linear direction but rather around a rotation pole (the center of earth). In calculating
a force or torque balance of a mountain belt, where every point in the belt is virtually
the same distance from the pole of rotation, the distance to the rotation pole cancels
out and torque balances and force balances are practically equivalent.

Force F is given in Newtons [N] and: 1 N=1 kgm s−2. Force is a vector with a
magnitude and direction. Horizontal forces are therefore tangential to the globe. The
equivalent on a spherical surface is torque. Torque (which is different from angular
momentum!) is the turning moment which is exerted by a force about an axis. It
is given by the product of force and the distance from the axis about which the
torque acts. Torque has the units of Nm or kgm2 s−2. A force of 1012 Newton that
acts in direction of a great circle on the earth’s surface, corresponds to a torque of
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Table 5: Important kinematical and mechanical parameters and their units. Each
parameter is given with both, the linear and the spherical equivalents

physical parameter unit

velocity m s−1

angular velocity s−1

acceleration m s−2

angular acceleration s−2

force kgm s−2

torque kgm2 s−2

mass kg

moment of inertia kgm2

linear momentum kgm s−1

angular momentum kgm2 s−1

6.37·1018 Nm. The torque changes along a plate margin, as the normal distance of the
plate margin to the rotation pole changes. The units of torque can be read as “Newton
times meter of leverage”, where the “meters of leverage” are the normal distance to
the rotation pole. In the literature, “forces” are often given in Newton per meter,
meaning for example, that the force building a mountain range is normalized “per
meter length of orogen”. It is important not to confuse this with torques, which have
the units of Newton times meters, there the meters are the distance to the rotation
pole.

Force = mass × acceleration (F = m × dv/dt) and similarly torque = mass ×
angular acceleration. In plate tectonics the changes in velocity and angular velocity
occur over very long time periods, so that accelerations and angular acceleration are
negligible. Thus, the common assumption is that the sum of the torques or the net
torque acting on a plate is zero or, correspondingly, that the sum of the forces or net
force acting on a smaller region such as a mountain belt is zero.


